
Supplementary Material:
Unsupervised Action Segmentation by Joint Representation Learning and

Online Clustering

Sateesh Kumar† Sanjay Haresh† Awais Ahmed Andrey Konin
M. Zeeshan Zia Quoc-Huy Tran

Retrocausal, Inc.
Seattle, WA

www.retrocausal.ai

In this supplementary material, we first discuss the lim-
itations of our method in Sec. 1 and show some qualitative
results in Sec. 2. Next, we provide the details of our im-
plementation and our Desktop Assembly dataset in Secs. 3
and 4 respectively. Lastly, we discuss the societal impacts
of our work in Sec. 5.

1. Limitation Discussions
Below we discuss the limitations of our method, includ-

ing the equal partition constraint in Eq. 6 of the main text,
the fixed order prior in Eq. 8 of the main paper, the perfor-
mance of TCL, the comparison with ASAL, and the case of
unknown activity class.
Equal Partition Constraint. We impose the equal partition
constraint on cluster assignments, which may not hold true
for the data in practice, i.e., one action might be longer than
others in a given video. However, the equal partition con-
straint is imposed on soft cluster assignments (cluster as-
signment probabilities), i.e., the sum of soft cluster assign-
ments should be equal for all clusters. More importantly, we
apply the constraint at the mini-batch level (not the dataset
level), which provides some flexibility to our approach, i.e.,
the sum of soft cluster assignments may be equal at the
mini-batch level but the final cluster assignments may fa-
vor one cluster over others to some extent. For example,
it may appear in Fig. 3(c) of the main paper that the soft
cluster assignments are evenly distributed, but if we obtain
the hard cluster assignments (by taking max over all soft
cluster assignments for each frame), we observe that cluster
#11 gets a slightly higher number of frames assigned than
others. The above observations show that our approach may
be capable of handling actions with various lengths to some

† indicates joint first author.
{sateesh,sanjay,awais,andrey,zeeshan,huy}@retrocausal.ai.

extent, which is likely the case for the datasets used in this
paper.
Fixed Order Prior. We apply a fixed order prior on the
clusters learned via our approach. The fixed order prior
allows us to introduce the temporal order-preserving con-
straint within the standard optimal transport module, and
predict temporally ordered clusters which are more natural
for video data and can be fed directly to the Viterbi decod-
ing module at test time. As evident in Fig. 3 of the main
text, OT without the fixed order prior fails to extract any
temporal structure of the activity (see Fig. 3(a)), while TOT
with the fixed order prior is able to capture the temporal
order of the activity relatively well (see Fig. 3(c)), i.e., ini-
tial frames are assigned to cluster #1, following frames are
assigned to cluster #2, subsequent frames are assigned to
cluster #3, and so on. The ablation study results in Tabs.
1 and 2 of the main paper show that the fixed order prior
provides performance gains on 50 Salads and YouTube In-
structions, which further confirms the benefits of the fixed
order prior. For the datasets used in this paper, permutation
generally occurs when an action is not performed by the ac-
tor. In such cases, our method assigns only a few frames
to the missing action (e.g., see the yellow segment in the
TOT result in Fig. 4 of the main text) and hence manages
to perform relatively well on the datasets used in this work.
Nevertheless, we note that if there are several permutations
or missing actions, our approach may not work.
TCL Performance. TCL has been used in many previous
works, e.g., [2, 3, 8], to exploit temporal cues in videos for
representation learning. Specifically, it encourages neigh-
boring video frames to be mapped to nearby points in the
embedding space (or belong to the same class) and distant
video frames to be mapped to far away points in the embed-
ding space (or belong to different classes). From our exper-
iments above, TCL works well in cases of small/medium

1

www.retrocausal.ai


intra-class variations, e.g., 50 Salads (Mid granularity),
YTI, and Desktop Assembly datasets, while often not per-
forming well in cases of large intra-class variations, e.g.,
50 Salads (Eval granularity) and Breakfast datasets. Fur-
thermore, our basic method (i.e., TOT) is able to achieve
similar or better results than many previous methods on all
datasets.
ASAL Comparison. On the Breakfast dataset, ASAL [7]
performs the best, while our method (i.e., TOT) outperforms
Mallow [9] and CTE [6] and performs on par with VTE [11]
and UDE [10]. We note that ASAL is first initialized by
CTE and then exploits action-level cues for refining the re-
sults of CTE (see Fig. 1 of the ASAL paper). Thus, we
could instead utilize our method to provide a better initial-
ization for ASAL and then leverage action-level cues with
ASAL for boosting our performance. This remains an in-
teresting direction for our future work. Furthermore, our
method relies on a single two-layer MLP network (same
as CTE), whereas ASAL employs a combination of three
networks, i.e., two MLP networks and one RNN network.
Since the objective of our work is to demonstrate the merit
of an online clustering approach, we decide to use a single
simple MLP network to facilitate a fair comparison with
CTE (an offline clustering method).
Unknown Activity Class. Prior works and ours assume
known activity classes and known number of actions per
activity. To mitigate that, in Sec. 4.7 of CTE, it proposes to
make guesses on values of K ′ (number of activity classes)
and K (same number of actions per activity), and per-
form multi-level clustering to predict activity classes. How-
ever, the guesses are in fact very close to the ground truth
(K ′ ∗ K = 50 vs. ground truth 48). Our approach could
be extended to perform multi-level clustering, but it is not
trivial and remains our future work.

2. Qualitative Results
Fig. S1 shows some qualitative results on 50 Salads,

YouTube Instructions, Breakfast, and Desktop Assembly
datasets. Overall, the results of TOT and TOT+TCL are
closer to the ground truth than those of CTE [6].

3. Implementation Details
Encoder Network. As mentioned in Sec. 4 of the main
paper, we employ a two-layer fully-connected encoder net-
work on top of the pre-computed features. Each fully-
connected layer is followed by the sigmoid activation func-
tion. The dimensions of the output features are 30, 40 and
200 respectively for 50 Salads, Breakfast, and YouTube In-
structions datasets.
Frame Sampling. As we mention in Sec. 3.2 of the main
text, our temporal optimal transport module assumes a fixed
order of the prototypes, and assigns early frames to early

(a) 50 Salads (rgb-03-2).

(b) YouTube Instructions (cpr 0010).

(c) Breakfast (P30 cam02 P30 sandwich).

(d) Desktop Assembly (2020-04-19 13-58-20).

Figure S1. Qualitative Segmentation Results on all the datasets.



prototypes and later frames to later prototypes. To imple-
ment the above, we sample frames from a video such that
i) the sampled frames are temporally ordered and ii) the
sampled frames spread over the entire video duration. In
particular, we first divide the video into N bins of equal
lengths. We then sample one anchor frame zi from the i-th
bin with i ∈ {1, 2, ..., N}. For the temporal coherence loss
presented in Sec. 3.1 of the main paper, we sample a “posi-
tive” frame z+

i for each anchor frame zi, i.e., z+
i is inside a

temporal window of λ from zi. Further, we consider all z+
j

with j 6= i as “negative” frames for zi.

Background Class on Breakfast. The “SIL” action class
in the Breakfast dataset corresponds to both background
frames occurring at the start and at the end of the videos.
However, the background frames at the start of the videos
are visually and temporally different from those at the end
of the videos. Therefore, following the 50 Salads dataset,
we break the starting background frames and the ending
background frames into 2 separate action classes (i.e., “ac-
tion start” and “action end”). For a fair comparison, we
have also evaluated CTE [6] with the above background la-
bel splitting, however that leads to performance drops on
both F1-Score and MOF metrics. In particular, CTE with
background label splitting obtains 22.7 F1-Score and 41.5%
MOF, whereas CTE without background label splitting (in
Tab. 5 of the main text) achieves 26.4 F1-Score and 41.8%
MOF.

Adding Entropy Regularization to Eq. 9. The entropy
regularization in Eq. 5 ensures cluster assignments are
smoothly spread out among clusters but does not consider
temporal positions of frames. The KL divergence in Eq. 9
takes both factors into account by considering temporal po-
sitions of frames and imposing a smooth prior distribution
(Eq. 8) on cluster assignments. We did try adding the
entropy regularization to Eq. 9 but did not get better re-
sults (for TOT on 50 Salads - Eval granularity, we obtained
46.2% vs. 47.4% in Tab. 3). Thus, we did not include the
entropy regularization term in Eq. 9.

Hyperparameter Settings. The network is trained by us-
ing the ADAM optimizer [5] at a learning rate of 10−3 and
a weight decay of 10−4. We freeze the gradients for the
prototypes during the first few iterations for better conver-
gence [1]. For the three public datasets, we set τ to 0.1, λ to
30, and α to 1.0. Further, the number of Sinkhorn-Knopp it-
erations is fixed to 3 and each mini-batch contains sampled
frames from 2 videos. Tabs. S1 and S2 present the hyper-
parameter settings for TOT and TOT+TCL respectively on
the three public datasets, including 50 Salads, YouTube In-
structions, and Breakfast.

Computing Resources. Our experiments are conducted
with a single Nvidia V100 GPU on Microsoft Azure.

4. Desktop Assembly Dataset Details

Our Desktop Assembly dataset includes 76 videos of dif-
ferent actors assembling a desktop computer from its parts.
The desktop assembly activity consists of 22 action classes
and 1 background class, amounting to a total of 23 ac-
tion classes. The actions are “picking up chip”, “placing
chip on motherboard”, “closing cover”, “picking up screw
and screw driver”, “tightening screw”, “plugging stick in”,
“picking up fan”, “placing fan on motherboard”, “tighten-
ing screw A”, “tightening screw B”, “tightening screw C”,
“tightening screw D”, “putting screw driver down”, “con-
necting wire to motherboard”, “picking up RAM”, “in-
stalling RAM”, “locking RAM”, “picking up disk”, “in-
stalling disk”, “connecting wire A to motherboard”, “con-
necting wire B to motherboard”, “closing lid”, and “back-
ground”. The activity is performed by 4 different actors
with various appearances, speeds, and viewpoints. We
downsample the videos to 10 frames per second, result-
ing in a total of 59, 165 frames for the entire dataset. We
use ResNet-18 [4] pre-trained on ImageNet to obtain pre-
computed features which are used as input for all methods.
The original videos, pre-computed features, and action class
labels are available at https://bit.ly/3JKm0JP. We
note that the action class labels are only used during evalu-
ation. Our hyperparameter settings for TOT and TOT+TCL
on our Desktop Assembly dataset are presented in Tab. S3.

5. Societal Impacts

Our approach enables learning video recognition mod-
els without requiring action labels. It would positively im-
pact the problems of worker training and assistance, where
models automatically built from video datasets of expert
demonstrations in diverse domains, e.g., factory work and
medical surgery, could be used to provide training and guid-
ance to new workers. Similarly, there exist problems such
as surgery standardization, where operation room video
datasets could be processed with approaches such as ours
to improve the standard of care for patients globally. On the
other hand, video understanding algorithms could generally
be used in surveillance applications, where they improve
security and productivity at the cost of privacy.

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. In Neu-
ral Information Processing Systems, 2020. 3

[2] Ross Goroshin, Joan Bruna, Jonathan Tompson, David
Eigen, and Yann LeCun. Unsupervised learning of spa-
tiotemporally coherent metrics. In Proceedings of the IEEE
international conference on computer vision, pages 4086–
4093, 2015. 1

https://bit.ly/3JKm0JP


Hyperparameter Value

Rho (ρ) 0.07 (E), 0.08 (M), 0.08 (Y), 0.05 (B)
Sigma (σ) 2.5 (E), 2.0 (M), 1.25 (Y), 1.0 (B)
Mini-batch size 512
Temperature (τ ) 0.1
Number of Sinkhorn-Knopp iterations 3
Learning rate 10−3

Weight decay 10−4

Number of videos per mini-batch 2

Table S1. Hyperparameter settings for TOT on the three public datasets, including 50 Salads, YouTube Instructions, and Breakfast. E
denotes 50 Salads (Eval granularity), M denotes 50 Salads (Mid granularity), Y denotes YouTube Instructions, and B denotes Breakfast.

Hyperparameter Value

Rho (ρ) 0.08 (E), 0.07 (M), 0.07 (Y), 0.04 (B)
Sigma (σ) 2.5 (E), 1.75 (M), 3.0 (Y), 0.75 (B)
Mini-batch size 512
Temperature (τ ) 0.1
Window size (λ) 30
Alpha (α) 1.0
Number of Sinkhorn-Knopp iterations 3
Learning rate 10−3

Weight decay 10−4

Number of videos per mini-batch 2

Table S2. Hyperparameter settings for TOT+TCL on the three public datasets, including 50 Salads, YouTube Instructions, and Breakfast.
E denotes 50 Salads (Eval granularity), M denotes 50 Salads (Mid granularity), Y denotes YouTube Instructions, and B denotes Breakfast.

Hyperparameter Value

Rho (ρ) 0.07
Sigma (σ) 2.0
Mini-batch size 512
Temperature (τ ) 0.1
Window size (λ) 30
Alpha (α) 1.0
Number of Sinkhorn-Knopp iterations 3
Learning rate 10−3

Weight decay 10−4

Number of videos per mini-batch 2

Table S3. Hyperparameter settings for TOT and TOT+TCL on our Desktop Assembly dataset. Window size (λ) and Alpha (α) are only
used in TOT+TCL.

[3] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-
ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[6] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen
Gall. Unsupervised learning of action classes with contin-
uous temporal embedding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,



pages 12066–12074, 2019. 2, 3
[7] Jun Li and Sinisa Todorovic. Action shuffle alternating learn-

ing for unsupervised action segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 2

[8] Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep
learning from temporal coherence in video. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pages 737–744, 2009. 1

[9] Fadime Sener and Angela Yao. Unsupervised learning and
segmentation of complex activities from video. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8368–8376, 2018. 2

[10] Sirnam Swetha, Hilde Kuehne, Yogesh S Rawat, and
Mubarak Shah. Unsupervised discriminative embedding for
sub-action learning in complex activities. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP), pages
2588–2592. IEEE, 2021. 2

[11] Rosaura G VidalMata, Walter J Scheirer, Anna Kukleva,
David Cox, and Hilde Kuehne. Joint visual-temporal em-
bedding for unsupervised learning of actions in untrimmed
sequences. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1238–1247,
2021. 2


	. Limitation Discussions
	. Qualitative Results
	. Implementation Details
	. Desktop Assembly Dataset Details
	. Societal Impacts

