
Supplementary: Uncertainty-Aware Adaptation for Self-Supervised
3D Human Pose Estimation

The supplementary document is organized as follows:

• Section 1: Notations

• Section 2: Training algorithms

• Section 3: Network architecture

• Section 4: Qualitative analysis

1. Notations
Most of the notations used in this paper are summarized

in Table 1. In the first part, we list the general architecture
related notations. Next, we group other notations into a)
output of BL, b) output of BR, c) datasets, and finally the
adaptation training related notations for both d) pose-level
and e) joint-level adaptation.

2. Training algorithms
In this section, we clearly discuss the training algorithms

which could not be included in the main paper. Algo. 1 and
Algo. 3 show the training algorithm for pose-level and joint-
level adaptation respectively. We simultaneously train on
samples from all the three datasets, i.e. on Ds, Dt, and Db

for pose-level adaptation and on DO
s , DO

t , and Db for joint-
level adaptation. The pseudo-label selection procedure is
clearly explained in both the algorithms (refer Table 1 for a
description of the notations). Though we use the above for
pose-level adaptation for a fair prior-art benchmarking, one
is always free to relax this assumption. a) Under pose-level
DA, synthetic training on DO

s (truncated+full) would make
it applicable for both full and truncated target. In Fig. 5,
notice the medium level uncertainty elicited by MRPN(PU)
for truncated target (a desirable behaviour). b) On the other
hand, joint-level adaptation already suits to both the scenar-
ios (MRPN(JU) in Fig. 5

Algo. 2 shows a detailed training procedure to pre-
pare the fusion network for the pose-level adaptation sce-
nario. We prepare a separate fusion network for the joint-
level adaptation. Table 3 reports relative contributions of
BR and BL outputs against the fused. In case of joint
level adaptation the loss-term in L3 of Algo. 2 is replaced
by 1(I,j)∈J s

inV
L(j)
p (p̂, pgt) (the second loss-term in L6 of

Table 1. Notation Table

Symbol Description

M
is

ce
lla

ne
ou

s

J Total no. of joints (17) indexed by j

E Encoder as the common backbone CNN
BL Localization branch (outputs heatmaps)
BR Regression branch (outputs 3D pose)
TFK Forward-kinematics operation
Tc Weak-perspective projection operation

o/
p

of
B

L h̃(j) Heatmap PDF for jth joint ∈ RH′×W ′

q̃(j) 2D pose coordinates for the jth joint ∈ R2

w̃(j) Joint confidences for the jth joint ∈ [0, 1]

O
/p

of
B

R

p̂l Local pose vectors (parent-relative) ∈ RJ×3

ĉ Camera parameters (3 angles, 1 scale, 2 translations)
p̂c Canonical 3D pose coordinates ∈ RJ×3

p̂ Camera-relative 3D pose coordinates ∈ RJ×3

q̂ projected 2D pose coordinates ∈ RJ×2

D
at

as
et

s Ds, Dt Labeled source and unlabeled target datasets (full-body)
DO

s , DO
t Source and target datasets with occlusion/truncation

Db A dataset of background images (other than human)

Po
se

-l
ev

el

U(I) Pose-level uncertainty for a given image
L(s)

Sup Supervised loss on Ds samples (minimized)
U (s) Pose-uncertainty of Ds samples (minimized)
U (b) Pose-uncertainty of Db samples (maximized)
U (t) Pose-uncertainty of Dt samples (minimized)
L(t)

pSup Loss on pseudo-label target subset Dpl
t (minimized)

αth
p Threshold to select pseudo-labeled target subset Dpl

t

Jo
in

t-
le

ve
l

H(I, j) Joint-level uncertainty (JU) for a given image, joint-id pair
LOA

Sup Occlusion-aware supervised loss on DO
s (minimized)

H(s)
J s

outV
JU of true out-view joints of DO

s (maximized)

H(b)
∀j JU of all joints for backgrounds Db (maximized)

H(t)

J t
inV

JU of pseudo-selected in-view joints of DO
t (minimized)

H(t)

J t
outV

JU of pseudo-selected out-view joints of DO
t (maximized)

LOA
pSup Loss on pseudo-labeled target set (I, j) ∈ J t

inV (minimized)

αth
q Threshold to select pseudo-labeled target in-view set J t

inV

αth
h Threshold to select pseudo-labeled target out-view set J t

outV

Algo. 3). Similarly, the loss-term in L4 of Algo. 2 is re-
placed by

∑
j∈J t

inV
w̃(j)L(j)(p̂, ppl

gt) (the second loss-term in
L11 of Algo. 3).

We trained the framework on an NVIDIA P-100 GPU
(16GB) with a batch size of 8. We employ separate Adam



Algorithm 1 Training algorithm for pose-level adaptation.

1: Input: Labeled source dataset Ds, unlabeled target
dataset Dt, and the background dataset Db. Let Θ de-
note the learnable parameters of the MRP-Net architec-
ture (excluding the fusion network).

2: while iter < MaxIter do
A. Pseudo-label update (after each Kinterval).

3: if iter (mod Kinterval) = 0 then
4: Compute Dpl

t where q̂t and q̃′t are obtained using
current state of network parameters Θ, as follows:
Dpl

t = {It : (|q̂t −Fq(q̃
′
t)|+ |q̃t −Fq(q̂

′
t)|) < αth

p }
5: end if

B. Adaptation training (for pose-level adaptation).

6: Update Θ by minimizing Lh(ĥ, hgt), Lp(p̂, pgt), and
U (s) (i.e. the first two terms under L(s)

Sup) on a mini-batch
of Ds using separate Adam optimizers.

7: Update Θ by maximizing U (b) on a mini-batch of Db

using Adam optimizer.
8: Update Θ by minimizing U (t) on a mini-batch of Dt

using Adam optimizer.
9: Update Θ by maximizing

∑
j w̃

(j)L(j)(h̃, hpl
gt) and∑

j w̃
(j)L(j)(p̂, ppl

gt) (i.e. the two terms under L(t)
pSup) us-

ing separate Adam optimizers.
10: end while

optimizers [2] for each loss term. Please refer Fig 1 for
sensitivity analysis. Note that, we use fixed threshold values
across all adaptation settings in Sec 4.1.
Importance of OOD images. We would like to reiterate
that the background images represent an objective segre-
gation of hard-OOD samples. The poses outside of the
training distribution are critical to identify and we segre-
gate them via the pseudo-label subset selection criteria (Eq.

Algorithm 2 Training algorithm for the fusion network.

1: Input: Labeled source dataset Ds and the pseudo-
labeled target subset Dpl

t . The network takes 3 inputs:
a) 3D pose predictions via BR (i.e. p̂), b) 2D pose pre-
diction via BL (i.e. q̃), and c) the joint-confidences w̃
via BL. Let θf denote the learnable parameters of the
fusion network.

2: while iter < MaxIter do
3: Update θf to minimize Lp(p̂

f , pgt) on a mini-batch
of Ds using Adam optimizer.

4: Update θf to minimize
∑J

j=1 w̃
(j)L(j)(p̂f , ppl

gt) on
a mini-batch of Dpl

t using Adam optimizer.
5: end while

Algorithm 3 Training algorithm for joint-level adaptation.

1: Input: Labeled source dataset DO
s , unlabeled target

dataset DO
t , and the background dataset Db. Let Θ de-

note the learnable parameters of the MRP-Net architec-
ture (excluding the fusion network).

2: while iter < MaxIter do
A. Pseudo-label update (after each Kinterval).

3: if iter (mod Kinterval) = 0 then
4: Compute J t

inV and J t
outV, where q̂t and q̃′t are

obtained using the current state of the network
parameters Θ, as follows:
J t

inV = {(It, j) : H(It, j)(|q̃(j)t −F (j)
q (q̂′t)|) < αth

q }
J t

outV = {(It, j) : H(It, j)(|q̃(j)t −F (j)
q (q̂′t)|) > αth

h}
5: end if

B. Adaptation training (for joint-level adaptation).

6: Update Θ by minimizing 1(I,j)∈J s
inV
L(j)
h (h̃, hgt) and

1(I,j)∈J s
inV
L(j)
p (p̂, pgt) (i.e. the first 2 terms under LOA

Sup)
on a mini-batch of DO

s using separate Adam optimizers.

7: Update Θ to maximize H(s)
J s

outV
= 1(I,j)∈J s

outV
H(I, j) on

a mini-batch of DO
s using Adam optimizer.

8: Update Θ to maximize H(b)
∀j on a mini-batch of Db us-

ing Adam optimizer.

9: Update Θ to minimize H(t)

J t
inV

= 1(I,j)∈J t
inV
H(I, j) on a

mini-batch of DO
t using Adam optimizer.

10: Update Θ to maximize H(t)

J t
outV

= 1(I,j)∈J t
outV

H(I, j) on

a mini-batch of DO
t using Adam optimizer.

11: Update Θ to maximize
∑

j∈J t
inV
w̃(j)L(j)(h̃, hpl

gt) and∑
j∈J t

inV
w̃(j)L(j)(p̂, ppl

gt) (i.e. the two terms under

LOA
pSup) using separate Adam optimizers. Here, w̃(j) is

normalized such that
∑

j∈J t
inV
w̃(j) = 1.

12: end while

4). Eq. 5 selectively imposes a strong loss on the more con-
fident target samples. It is to be noted that, such segregation
is highly subjective, and treating these soft-OOD samples
as hard-OOD deteriorates the generalization performance.

3. Network architecture
The architecture consists of an ImageNet initialized

ResNet-50 (till Res-4F) which bifurcates into two branches,
BL and BR as shown in Fig. 3. BL is a convolutional de-
coder consisting of an alternate series of transposed con-
volution and general convolution which progressively in-
creases the spatial resolution from 7×7 to 56×56. The final
output of BL is 17 heatmap PDFs, h̃ obtained via spatial
softmax. These are then used to extract the correspond-



Table 2. Assets and the corresponding Licenses
Asset used License
Human3.6M � [1] Limited license for academic use �
MPI-INF-3DHP � [3] Limited license for academic use �
3DPW � [7] Limited license for academic use �
HumanEva � [5] Limited license for academic use �
SURREAL � [6] Limited license for academic use �

Table 3. Relative contribution of
fusion network inputs on 3DPW,
MPJPE (↓).
Methods p̂ q̃ q̃ +w̃ Fused
Ours(H→3PDW) 100 122 115 91
Ours(JU:H→3DPW) 116 142 135 98

Figure 1. Hyperparameter sensitivity.
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Figure 2. Qualitative analysis. 3D poses shown correspond to the original camera view and another azimuthal view at +30◦ or -30◦

depending on best viewing angle. For results in panel E and F the joints with uncertainty greater than a prefix threshold are highlighted
with red-blobs. The model fails on rare poses, complex inter-limb occlusion and heavy background clutter as highlighted by red bases.

Figure 3. Detailed architecture of the proposed MRP-Net. On the right we show the legend. Here, K3C256S2 denotes specifications of
the convolutional layer, i.e. 3×3 filter size, 256 filters applied with a stride 2. Here, TConv denotes transposed convolution operation. FC
denotes fully-connected layer. x2 and x3 depict number of residual blocks that are stacked to form the corresponding branch.

ing 2D joint coordinates, q̃ and joint confidence, w̃. BR

consists of a common branch with fully-connected residual
blocks [8] which further divides into camera, ĉ and pose
prediction p̂l sub-branches, each consisting of 2 residual
blocks. The outputs, w̃, q̃, and p̂ are concatenated and
passed to the fusion network which is composed of a se-

ries of 3 residual blocks to regress the final 3D pose, p̂f .
Fig. 3 shows the detailed architecture. Further, ablation per-
formance with fusion network is shown in Table 4 (MPJPE
of #5-7, Table 4). We see that a better adaptation further
enhances the gain from fusion network.

http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/eula.php
http://gvv.mpi-inf.mpg.de/3dhp-dataset/
http://gvv.mpi-inf.mpg.de/3dhp-dataset/
https://virtualhumans.mpi-inf.mpg.de/3DPW/
https://virtualhumans.mpi-inf.mpg.de/3DPW/license.html
http://humaneva.is.tue.mpg.de/
http://humaneva.is.tue.mpg.de/data_license
https://www.di.ens.fr/willow/research/surreal/data/
https://www.di.ens.fr/willow/research/surreal/data/license.html


Figure 4. A. Shows histogram of the predicted joint-uncertainties for the true in-view and out-view joints separately for source (i.e. inV-S
and outV-S) and target (i.e. inV-T and outV-T). BG denotes the histogram of all out-view joints for backgrounds. The shaded regions in
the bottom panel depicts J t

inV and J t
outV which are segregated using the preset thresholds αth

q and αth
h respectively (edges of the green-box).

Our adaptation algorithm succeeds to separate inV-T and outV-T over the course of adaptation training. B. Shows a similar analysis for
pose-uncertainties. We show 5 different examples sampled from different regions of the histogram-bins. Results on right-panel: Notice
that to maximize pose-uncertainty for backgrounds (OOD samples), MRPN estimates the 2D landmarks and 3D pose points separated
towards opposite diagonal corners. Here, the 2D landmarks are collapsed to the top-left corner whereas the root joint (pelvis) of the model-
based 3D predictions are seemed to have collapsed towards the bottom-right corner. Result on bottom-panel: For uncertain target instances,
we see two peaks in the joint heatmap PDFs; one at the top-left corner (OOD-related) and the other near the actual joint location. During
adaptation, the OOD-related peak suppress while the joint-related peak rises to simultaneously reduce the uncertainty while converging
towards the true pose outcome. Results on the left panel: Joint-level uncertainty is indicated by the entropy of heatmap PDF.

Figure 5. Every pose prediction of MRPN is associated with
a measure of uncertainty barometer. The barometer height in-
dicates high uncertainty. The blue, green and orange barometers
indicate the average prediction uncertainty for the full-pose,
true-in-view joints and true-out-view joints respec-
tively. The dotted gray rectangles highlight the failure cases of
LCR++ in predicting the correct 3D inter-limb depth though the
2D landmarks align with the GT. In the last 2 rows, the filled red-
box under GT column segregates the true out-view joints. The
in-view joint predictions of MRPN(JU) (unfilled green rectangles)
performs better against the same for LCR++ (unfilled red rectan-
gles) when compared against the same under GT.

4. Qualitative analysis

We perform a thorough qualitative study to interpret
the behaviour of our network for a wide variety of in-
distribution and out-of-distribution samples (see Fig. 2).

Table 4. Evaluation of #5-7 from Table 4 with fusion network.

No. Method L(s)
Sup − U (b) U t L(t)

pSup w/o fuse w/ fuse

5. B2(S→H)+DANN only L(s)
Sup Standard DA 116.8 114.5 (2.3 ↓)

6. B2(S→H) ✓ - - 122.4 122.1 (0.3 ↓)
7. B2(S→H) ✓ ✓ - 113.4 110.7 (2.7 ↓)

The analysis in Fig. 4A shows that the proposed joint-
level adaptation algorithm succeeds to separate inV-T and
outV-T over the course of adaptation training, thereby align-
ing these with inV-S and outV-S respectively. In Fig. 5,
MRPN(B1) indicates the occlusion-aware network before
the adaptation training. MRPN(PU) and MRPN(JU) indi-
cate the final networks after the pose-level and joint-level
adaptations. Further we show the ground-truth (2D) and
predictions on LCR++ [4]. MRPN(PU) is not tuned to work
on occluded/truncated images and thus yields a higher un-
certainty for the last two rows. Whereas, the uncertainty
predictions of MRPN(JU) for the green and orange barom-
eter yield the expected behaviour.
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