
Supplementary Material:
Context-Aware Sequence Alignment using 4D Skeletal Augmentation

Taein Kwon1 Bugra Tekin2 Siyu Tang1 Marc Pollefeys1,2
1Department of Computer Science, ETH Zürich 2Microsoft MR & AI Lab, Zürich

In the supplemental material, we first provide details about
the temporally smoothed noise we used for 4D augmentation
and our hyper-parameters. Next, we analyze the performance
of our approach for fine-grained frame retrieval and online se-
quence alignment. We then provide additional qualitative re-
sults of our algorithm for aligning two sequences and discuss
our design choices for VPoser latent space, phase classifica-
tion and encoding contextual informaton. Finally, we discuss
the broader social impact of our work. Additional qualitative
visual results can be found in the accompanying video. Note
that, in the accompanying video, we align the sequences by
finding nearest neighbors in the embedding space without any
post-processing.

S.1. Temporally Smoothed Noise

Figure S1. Covariance matrix for our zero-mean multivariate
normal noise distribution.

While augmenting the joint angle and the latent space, the
amount of noise applied across consecutive frames should
not be completely independent of each other to preserve the
smoothness and consistency of motion. To this end, we pro-
pose to add temporally smoothed noise, MN(C), across the
sequence, as explained in our paper. We model this using a
multivariate normal distribution with a covariance matrix C
that enforces high correlation between temporally close frames

within the same augmented sequence and low correlation be-
tween frames that are further away from each other. We depict
the covariance matrix in Fig. S1 and formulate it as follows:

Cj,j′ = 1− |j − j′|
2 ·N

, (1)

where j and j′ depict two frame indices from the augmented
sequence, and N is the length of the augmented sequence.
When j and j′ are close to each other, the covariance is high,
indicating that the noise applied on the poses at those frames
are similar. This eventually results in less jittery and smooth
augmented sequences.

S.2. Implementation Details

We list the hyperparameters we use in our experiments in
Table S1.

Hyperparameter Value
Batch Size 64 (Penn), 32 (H2O), 4 (IKEA)
Learning rate 3e-3(Penn), 3e-4 (H2O), 3e-2 (IKEA)
Optimizer ADAM
Temperature (λtemp) 0.1
3D geometric noise probability 0.3
Noise standard deviation (σ) 10 (angle), 0.1 (VPoser, translation)
Number of attention layers (Natt) 4
Number of heads (parallel attention layers) 15 (Penn), 17(IKEA), 21 (H2O)
Frames per second 20 (Penn), 30 (IKEA, H2O)

Table S1. Hyperparameters in our experiment.

S.3. Fine-Grained Frame Retrieval

We show fine-grained frame retrieval results in Table S2.
We find the K nearest frames from one query frame in the em-
bedding space. Following [3], we report Average Precision
(AP) at K, that is, the average percentage of correctly retrieved
action phase labels within K-retrieved frames. Table S2 shows
that our method improves upon prior work by a large margin
(an improvement of 10.77% at K = 5, 10.46% at K = 10
and 10.17% at K = 15). In Fig. S3, we show qualitative re-
sults of our algorithm compared to TCC [2]. We observe that
our method is able to accurately retrieve relevant frames by
reasoning about the temporal context of the actions.
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Method AP@5 AP@10 AP@15
SAL [4] 76.04 75.77 75.61
TCN [6] 77.84 77.51 77.28
TCC [2] 76.74 76.27 75.88
LAV [3] 79.13 78.98 78.90

CASA (Ours) 89.90 89.44 89.07

Table S2. Fine-grained frame retrieval. We compare fine-grained
frame retrieval results on the Penn Action dataset [8].

Offline Online TCC [2] LAV [3]
Phase classification 92.20 88.01 81.35 84.25

Phase progress 0.9449 0.8454 0.6638 0.6613
Kendall’s Tau (τ ) 0.9728 0.9059 0.7012 0.8047

Table S3. Ablation study of online sequence alignment. We com-
pare the phase classification, phase progress, and Kendall’s tau for
online and offline operating modes of our model on the Penn Action
dataset [8]. While we use the full sequence for offline mode, we only
use the embeddings up until the current frame for the online mode.

S.4. Online Sequence Alignment

Our method uses an attention-based model to capture con-
text from all the frames to compute alignment across two
videos. However, for online applications, the assumption of
having the full sequence will not be valid. Therefore, to
demonstrate the potential of our approach for online appli-
cations (e.g., online task guidance in augmented reality), we
perform an additional experiment, in which, we use contex-
tual information only using frames, seen until the current time
frame. To this end, we rely on embeddings computed until the
current frame and use it for matching across sequences. Ta-
ble S3 demonstrates that we report consistently high sequence
alignment performance as compared to existing approaches,
even when we perform at a fully online manner only using
contextual information from past frames.

S.5. Qualitative Results

We provide additional sequence alignment results of our ap-
proach in Fig. S4 and Fig. S5. Our method is able to align
sequences across time by considering temporal context.

S.6. VPoser Latent Space

In Fig. S2, we observe from the t-SNE visualization of the
pose embedding of VPoser [5] that the latent space is smooth
and well-behaved. Different sequences with the same action
are embedded in closeby locations in the embedding space
and temporally close frames are mapped to nearby points in
the embedding space. Therefore we conjecture that augmenta-
tions applied on the VPoser latent space would correspond to
reasonable spatiotemporal augmentations in the original pose
space and would enrich our dataset with diverse and realistic
pose sequences.

Figure S2. t-SNE distribution. We visualize the t-SNE distribution
using baseball pitch action on the PennAction dataset. Each point
represents an encoded pose using VPoser [5]. We use the same color
for the poses in the same sequence. In addition, we show the be-
ginning and end frames with different shades of the same color (e.g.
first frames are encoded with lighter colors, while later frames are
encoded with darker colors.)

S.7. SVM vs Nearest Neighbor

In our main paper, we provide results for phase classifica-
tion on features learned through self-supervised learning using
SVM classifier. We further compute phase classification re-
sults using nearest neighbor which does not require any train-
ing data. We obtain an accuracy of 89.52% on the PennAction
dataset, which is still beyond the state-of-the art, even without
using any training data. Note that the previous state-of-the-art
method (LAV) [3] reports 83.56%, 83.95% and 84.25% phase
classification accuracy, when using an SVM classifier trained
on a fraction of 10%, 50% and 100% of the ground truth labels.

S.8. Encoding Contextual Information

The global receptive field, positional encoding and self- and
cross-attention layers of Transformer enable the transformed
feature representations to be context- and position-dependent,
as also posited by prior work [1,7]. Therefore our architecture
enables our method to be aware of the spatial and temporal
context of the human actions.

S.9. Societal Impact

While our method for sequence alignment provides many
beneficial use cases for AR-based task guidance, it could also
be misused for surveillance and monitoring people’s actions.
This could raise privacy concerns and therefore use of this
technology should be guided by responsible AI principles.



Figure S3. Retrieval results. We visualize our fine-grained retrieval results for the Penn Action (k = 7) and H2O (k=3) datasets in comparison
to TCC [2] and demonstrate that our method is able to successfully retrieve visually similar frames. For example, in the “tennis” sequences,
our method is able to find “racket swung fully back” action correctly in all the examples whereas TCC fails to retrieve it in some of them.



Figure S4. Sequence alignment results. We draw matching lines for every 20 frames in the pouring milk sequence and for every frame in
baseball swing sequence.



Figure S5. Sequence alignment results. We draw matching lines for every frame in the baseball pitching and jumping jacks sequences.
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