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Introduction

This is the supplementary material, which is divided into
the following sections.

1. More experimental results are shown in Sec. 1.

2. We illustrate more ERF [18] visualizations in Sec. 2.

3. More visual comparisons are shown in Sec. 3.

4. The illustration of 3D shifted window is shown in
Fig. 2.

5. The illustration of the contextual Relative Position En-
coding (cRPE) is shown in Fig. 3.

6. The robustness study on ScanNetv2 is shown in Sec. 4.

7. More detailed memory complexity analysis and the po-
sition encoding implementation are given in Sec. 5.

8. More ablation studies are shown in Sec. 6.

9. Introduction of ScanNetv2 [5], S3DIS [1] and
ShapeNetPart [2] are given in Sec. 7.

10. Implementation details for experiments on ShapeNet
Part is given in Sec. 8.

11. Comparision of FLOPs with previous methods is given
in Sec. 9.

12. Limitation analysis and future work are shown in
Sec. 10.

1. More Experimental Results

More results on S3DIS and ScanNetv2 datasets are
shown in Tables 1 and 2, respectively. We add per-class
results on both datasets. Also, we add the result of Scan-
Netv2 with model ensembling in Table 2. Amazingly,
ours achieves 74.7% mIoU in ScanNetv2 benchmark, and
outperforms other semantic segmentation methods purely
based on 3D points by a large margin.

2. More ERF Visualizations

As shown in Fig. 1, we demonstrate more visualizations
of Effective Recetive Field (ERF) [18]. The illustrations
are similar to Fig. 1 of the submission file. We follow
the definition of ERF in [18] to calculate the gradient of
every input point xi with regard to the feature of interest,
i.e., ∂y

∂xi
, which depicts how much the feature changes as

input point xi changes by a small amount. Afterwards,
we adopt the colormap CV2.COLORMAP JET for coloriza-
tion, therefore, red region corresponds to high contribution.

Input / Ground Truth w/o stratified w/ stratified
bed chair curtain desk floor table wall

sofa door counter cabinet otherfurniture

Figure 1. Visualization of Effective Receptive Field (ERF) [18],
given the feature of interest (shown with green star) in the output
layer. Red region corresponds to high contribution. Left: Input
point cloud and the ground truth. Middle: The ERF and prediction
of the model without stratified strategy and by only attending to
its own window. Right: The ERF and prediction of the model
with direct long-range dependency, using the stratified strategy.
It reveals the fact that the stratified sampling strategy is able to
capture long-range contexts.
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Method Input OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [20] point - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [23] point - 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
TangentConv [22] point - 62.2 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8
PointCNN [14] point 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PointWeb [32] point 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
HPEIN [11] point 87.2 68.3 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
GACNet [25] point 87.8 - 62.9 92.3 98.3 81.9 0.0 20.4 59.1 40.9 85.8 78.5 70.8 61.7 74.7 52.8
PAT [30] point - 70.8 60.1 93.0 98.5 72.3 1.0 41.5 85.1 38.2 57.7 83.6 48.1 67.0 61.3 33.6
ParamConv [26] point - 67.0 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
SPGraph [12] point 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
SegGCN [13] point 88.2 70.4 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 88.7 80.9 71.3 69.0 44.4 54.3
MinkowskiNet [4] voxel - 71.7 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
PAConv [28] point - 73.0 66.6 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7
KPConv [24] point - 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PointTransformer [33] point 90.8 76.5 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

Ours point 91.5 78.1 72.0 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0

Table 1. More results on S3DIS Area5 for semantic segmentation.

Method Input Val mIoU Test mIoU bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind

PointNet++ [21] point 53.5 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5 94.6 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
3DMV [6] point - 48.4 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9
PanopticFusion [19] point - 52.9 49.1 68.8 60.4 38.6 63.2 22.5 70.5 43.4 29.3 81.5 34.8 24.1 49.9 66.9 50.7 64.9 44.2 79.6 60.2 56.1
PointCNN [14] point - 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
PointConv [27] point 61.0 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
JointPointBased [3] point 69.2 63.4 61.4 77.8 66.7 63.3 82.5 42.0 80.4 46.7 56.1 95.1 49.4 29.1 56.6 45.8 57.9 76.4 55.9 83.8 81.4 59.8
PointASNL [29] point 63.5 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
SegGCN [13] point - 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
RandLA-Net [9] point - 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
KPConv (rigid) [24] point - 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
JSENet [10] point - 69.9 88.1 76.2 82.1 66.7 80.0 52.2 79.2 61.3 60.7 93.5 49.2 20.5 57.6 85.3 69.1 75.8 65.2 87.2 82.8 64.9
SparseConvNet [8] voxel 69.3 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MinkowskiNet [4] voxel 72.2 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
FusionNet [31] point - 68.8 70.4 74.1 75.4 65.6 82.9 50.1 74.1 60.9 54.8 95.0 52.2 37.1 63.3 75.6 71.5 77.1 62.3 86.1 81.4 65.8

Ours point 74.3 73.7 92.2 77.7 83.1 72.7 83.3 54.5 82.0 68.8 62.4 95.4 52.7 27.4 75.2 85.7 72.6 77.8 66.2 88.8 85.0 71.2
Ours (ensemble) point 74.8 74.7 90.1 80.3 84.5 75.7 84.6 51.2 82.5 69.6 64.5 95.6 57.6 26.2 74.4 86.1 74.2 77.0 70.5 89.9 86.0 73.4

Table 2. More results on ScanNetv2 for semantic segmentation.

Input / Ground Truth w/o stratified w/ stratified Input / Ground Truth w/o stratified w/ stratified
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Figure 1. Visualization of Effective Receptive Field (ERF) (Cont.)
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Figure 2. Illustration of the shifted window operation in 3D. (a)
Window attention is performed. (b) The window is shifted in the
successive Transformer block.
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Figure 3. Illustration of contextual Relative Position Encoding.

Method None Perm. 90◦ 180◦ 270◦ +0.2 −0.2 ×0.8 ×1.2 jitter

Minkowski 72.22 72.23 71.92 71.97 72.00 71.99 72.03 69.92 70.86 71.43

Ours 73.90 74.09 74.00 73.96 73.79 73.98 73.95 73.26 72.72 69.49

Table 3. Robustness study on ScanNetv2.

3. More Visual Comparisons
As shown in Fig. 4, we show more visual comparisons

with MinkowskiNet [4] on ScanNetv2 validation set. As
highlighted with the yellow box, ours is able to accurately
recognize the objects, while the MinkowskiNet fails, which
visually demonstrates the superiority of our method.

4. Robustness Study on ScanNetv2
As shown in Table 3, we evaluate the robustness of our

method and also MinkowskiNet [4] on ScanNetv2 with dif-
ferent perturbations in testing, including permutation, rota-
tion, shift, scale, and jitter. Obviously, ours is more robust
when encountering most perturbations, especially with scal-
ing. As for jitter, ours drops too much, because we do not
adopt random jitter as data augmentation during training.

5. Memory Complexity Analysis and Position
Encoding Implementation

Our implementation. As mentioned in Sec.4 of the
submission file, we pre-compute all the query-key pairs
that need dot product. Concretely, we use two indices
indexq, indexk ∈ RM to refer to the query and key
features, respectively. Hence, we yield the attention map
attn ∈ RM×Nh via dot product. Without loss of gener-

ality, we discuss the memory complexity analysis based on
the vanilla version Transformer Block for simplicity. Since
each query only attends to the keys within its window, we
have a total of

∑n
i=1 k

2
i query-key pairs that need dot prod-

uct, where n denotes the number of non-empty windows
and ki denotes the number of points within the i-th window.
Therefore, the memory complexity is formulated as

O(M ·Nh) = O(

n∑
i=1

k2i ·Nh)

Vanilla padding-based implementation. The vanilla im-
plementation pads the keys to the maximum number over all
windows with dummy tokens for each query point. There-
fore, the complexity would be O(

∑n
i=1 ki · kmax · Nh),

where kmax = maxni=1 ki denotes the maximum number
of points over all windows.

Comparing the above two methods, since ki << kmax

for most windows practically, we have

O(M ·Nh) = O(

n∑
i=1

k2i ·Nh) << O(

n∑
i=1

ki · kmax ·Nh)

which implies that our memory-efficient implementation is
able to save large amount of memory.

Incorporate position encoding. By incorporating posi-
tion encoding, we need to add two extra steps, i.e., (1) dot
product between the query/key features and the correspond-
ing position encoding to produce the positional bias, (2) ad-
dition between the value features and the value position en-
coding, followed by weighted-sum aggregation.

For the first step, we use the relative position index
idx ∈ Rkt×kt×3 to look up to the learnable tables for
qeury and key tqx (tkx), tqy (tky) and tqz (tkz ), respectively,
and sum up to yield the corresponding position encoding.
Then, the position encoding performs dot product with the
query/key features to obtain the positional bias. Note that
we implement this process within a single CUDA kernel,
where we take idx ∈ Rkt×kt×3, tqx, tqy , tqz ∈ RL×Nh×Nd ,
q ∈ RN×Nh×Nd , idxq ∈ RM as input and output
pos bias ∈ RM×Nh for the query features. The calcu-
lation is similar for the key features.

As for the second step, we extend the weighted sum pro-
cess in Fig.7 (c) of the submission file to also incorporate
the addition with the value features. Similar to the first step,
we also use the relative position index idx to look up the
learnable table for value. This process is also implemented
with a single CUDA kernel.



weight decay 0.01 0.001 0.0001

mIoU 72.0 70.3 70.2

Table 4. Ablation study on weight decay evaluated on S3DIS.

Approach S3DIS ScanNetv2

grid sampling 69.6 72.3
farthest point sampling (fps) 72.0 73.7

Table 5. Ablation study on downsample approaches.

scale 4 8 16

mIoU 70.9 72.0 70.5

Table 6. Ablation study on the downsample scales in stratified
sampling strategy.

6. More Ablation Studies
In the supplementary material, we show ablation studies

on weight decay, downsample approaches and the down-
sample scale in the stratified sampling strategy as follows.

Large weight decay. In 2D vision Transformer such as
ViT [7] and Swin Transformer [17], strong regularization is
essential to achieve the best performance. We also use large
weight decay in our framework. The ablation on weight
decay in Table 4 shows the necessity of large weight decay.

Downsample. For the downsample layer, we compare the
farthest point sampling (fps) with the grid sampling that is
used in KPConv [24]. As shown in Table 5, we find that fps
yields higher performance in both S3DIS and ScanNetv2
datasets. It demonstrates that uniform point distribution is
beneficial for feature learning in our framework.

Stratified downsample scale. To further investigate the
effect of different downsample scales in the stratified sam-
pling strategy. We evaluate different downsample scales,
i.e., 4, 8 and 16 as shown in Table 6. We notice that setting
the downsample scale to 8 achieves the best performance.
We guess that setting the downsample scale to a lower value
may cause too sparse distribution of distant points and thus
limited benefits, while setting it to a higher value may lead
to slower convergence in training.

7. Datasets Introduction
We use the S3DIS [1] and ScanNetv2 [5] datasets for the

semantic segmentation task. Both of them are challenging

Method mIoU ↑ FLOPs ↓
KPConv [24] 67.1 2042
PosPool [16] 66.7 2041
PAConv [28] 66.6 1253

Ours 72.0 1714

Table 7. FLOPs Comparison on S3DIS.

large-scale indoor scenes datasets. The S3DIS dataset in-
cludes 271 rooms in 6 areas from three buildings, and 13
commonly seen categories are annotated. Following the
common practice, we use the scenes in Area 5 for testing
and others for training. The ScanNetv2 dataset contains
1201, 312 and 100 indoor RGB-D scenes for training, val-
idation and testing, respectively. And it is annotated with
semantic labels within 20 categories.

We also evaluated our method on ShapeNet Part [2] for
the part segmentation task. It contains 16,881 shapes la-
beled with 16 class categories and 50 parts categories.

8. Inplementation Detail for ShapeNet Part

We follow PAConv [28] to adopt the official data splits.
We use AdamW optimizer with initial learning rate, weight
decay and betas set to 0.003, 0.01 and (0.9, 0.999). We
train for 200 epochs with 2 RTX 2080Ti GPUs. The batch
size and stratified downsample scale are set to 64 and 8,
respectively. We adopt the same voting strategy as previous
works [15, 28] in testing.

9. FLOPs Comparison

As shown in Table 7, we demonstrate the FLOPs com-
parison with previous methods such as KPConv [24],
PosPool [16] and PAConv [28]. We follow [28] to take
4096 points as input and calculate the number of floating-
point operations. The results show that our method outper-
forms others by a large margin and also maintains satisfying
FLOPs, which demonstrates the superiority of our model.

10. Limitation Analysis and Future Work

Limitation analysis. Our method is able to yield strong
performance in large-scale datasets, but may be a sub-
optimal solution for small datasets, because less inductive
bias is introduced in Transformer-based network.

Also, more advanced data augmentation has not been ap-
plied to our model during training, which may limit the per-
formance. However, strong regularization is demonstrated
to be crucial in training Transformer-based networks.

Moreover, despite smaller FLOPs, training is relatively
slower compared to previous methods due to the lack of us-



age of advanced CUDA functionality such as shared mem-
ory.

Future work. In the future, we will extend our framework
to many other 3D point cloud tasks such as 3D object de-
tection, instance segmentation, etc. Also, to further boost
the performance, we will explore advanced data augmen-
tation for training. Besides, we will adopt more advanced
CUDA functionality or methods to decrease the high mem-
ory throughput, hence accelerating the training process.
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Figure 4. More visual comparisons with MinkowskiNet [4].

Notation Meaning Shape

N input points number.

k average input point number within each window.

kt input point number within the t-th window.

Nh the number of heads.

Nd the dimension of each head.

Nc the feature dimension.

x MSA input points within the t-th window. (kt, Nh ×Nd)

q, k, v MSA query, key, value features. (kt, Nh, Nd)

attn MSA attention map prior to softmax. (kt, kt, Nh)

ˆattn MSA attention map after softmax. (kt, kt, Nh)

y MSA aggregated features. (kt, Nh, Nd)

ẑ MSA output features. (kt, Nh ×Nd)

swin the size of cubic window.

slargewin the size of large cubic window in the stratified Transformer.

squant the quantization size.

L the length of learnable look-up tables.

p the coordinates for points within the t-th window. (kt, 3)

r the relative coordinates for points within the t-th window. (kt, kt, 3)

t learnable look-up tables. (L,Nh ×Nd)

idx indices of look-up tables for points within the t-th window. (kt, kt, 3)

e relative position encoding for points within the t-th window. (kt, kt, Nh, Nd)

pos bias relative positional bias for points within the t-th window. (kt, kt, Nh)

Table 8. Notation Table.
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