
AdaSTE: An Adaptive Straight-Through Estimator to Train
Binary Neural Networks
Supplementary Material

Huu Le Rasmus Kjær Høier Che-Tsung Lin Christopher Zach
Chalmers University of Technology, Gothenburg, Sweden
huul,hier,chetsung,zach@chalmers.se

1. Algorithmic Comparison between AdaSTE,
ProxQuant and Mirror Descent

Algorithm 1 illustrates the differences between Prox-
Quant, Mirror Descent, and the proposed AdaSTE method
to train binarized DNNs. For better clarity we display a
full-batch gradient method, and we also omit the annealing
aspect of ProxQuant and MD (i.e. we assume a fixed pa-
rameter absorbed into ~s and E , respectively). (M38) refers
to Equation 38 in the main text.

Mirror descent-based training and AdaSTE share the in-
terpretation of θ(t) as the current latent weights, whereas
θ(t) already tends to be binarized in ProxQuant. In the next
section we show that AdaSTE can be considered as adaptive
and time-varying variant of mirror descent.

Algorithm 1 ProxQuant/MD/AdaSTE training method.

1: Initialize θ(0), choose learning rates η(t), t = 1, . . .
2: for t = 1, . . . do
3: w∗ ← θ(t)

4: w∗ ← ~s(θ(t))
5: w∗ ← ~s(θ(t))
6: Run regular back-prop to determine `′(w∗)
7: θ(t+1) ← proxη(t)E

(
θ(t) − η(t)`′(w∗)

)
8: θ(t+1) ← θ(t) − η(t)`′(w∗)

9: Determine ~β(t) using (M38)
10: ŵ ← ~s

(
θ(t) − ~β(t) � `′(w∗)

)
11: θ(t+1) ← θ(t) − η(t)(w∗ − ŵ)� ~β(t)

12: end for

2. A Mirror Descent Interpretation of AdaSTE

In this section we establish a connection between
AdaSTE and mirror descent with a data-adaptive and vary-
ing metric. Since the update in AdaSTE is applied element-
wise, we focus on the update of θj (a scalar) in the follow-
ing. For brevity of notation we drop the subscript j.

We consider using a “partial” chain rule as follows. Let
the target forward mapping be the composition of s1 and s2,
i.e. s = s2 ◦ s1. Then the AdaSTE update step is abstractly
given by

θ(t+1) ← θ(t) − η`′(s2(s1(θ(t))))s′2(s1(θ(t))). (1)

Observe that only one step of the chain rule is applied on
` as s′1 is not used. We introduce an “intermediate” weight
u = s1(θ), and therefore w = s2(u) = s2(s1(θ)) = s(θ).
Expressing the above update step in u yields

s−1
1 (u(t+1))← s−1

1 (u(t))− η`′(s2(u(t)))s′2(u(t)), (2)

and identifying s−1
1 with the mirror map ∇Φ results even-

tually in

u(t+1) = arg min
u

1
ηDΦ(u‖u(t)) + `′(s2(u(t)))s′2(u(t))

= arg min
u

1
ηDΦ(u‖u(t)) + d

du`(s2(u))
∣∣
u=u(t) .

(3)

Now the question is whether there exist mappings s1 and s2

such that

s2(s1(θ)) = s(θ) s′2(u) = s′(s−1
1 (u)− h), (4)

where will be chosen as h = β`′ in AdaSTE. The first rela-
tion yields

s1(θ) = s−1
2 (s(θ)) and s−1

1 (u) = s−1(s2(u)). (5)

Hence, the second condition above is equivalent to

s′2(u) = s′(s−1
1 (u)− h) = s′

(
s−1(s2(u))− h

)
.

By expressing this relation in terms of θ we obtain

s′2(s1(θ)) = s′(θ − h) ⇐⇒ s′2(s−1
2 (s(θ))) = s′(θ − h)

⇐⇒ 1

(s−1
2)′(s(θ))

= s′(θ − h)

⇐⇒ (s−1
2)′(w) =

1

s′(s−1(w)− h)
.

1

Consequently, s−1
2 can be determined by solving

s−1
2 (w) =

∫ w

w0

1

s′(s−1(ω)− h)
dω. (6)

If h = 0, then s−1
2 = s−1 (and therefore s1 = id) is a

valid solution. For h 6= 0, there is sometimes a closed-form
expression for s−1

2 . We consider s = tanh, i.e.

s(θ) =
eθ − e−θ

eθ + e−θ
=
e2θ − 1

e2θ + 1
s′(θ) =

4e2θ

(e2θ + 1)2
. (7)

With this choice we obtain (via a computer algebra system)

(s−1
2)′(w) =

1

s′(s−1(w)− h)

=
e−2h

(
(e2h − 1)w − e2h − 1

)2
4(1− w2)

=

(
(eh − e−h)w − eh − e−h

)2
4(1− w2)

. (8)

Now the following relation holds,∫
(aw + b)2

4(1− w2)
dw

.
= 1

8

(
−2a2w − (a+ b)2 log(1− w) + (a− b)2 log(1 + w)

)
.

Plugging in the values a = eh − e−h and b = −eh − e−h
(and therefore a+ b = −2e−h and a− b = 2eh) results in

s−1
2 (w)

= 1
8

(
−2(eh−e−h)2w − 4e−2h log(1−w) + 4e2h log(1+w)

)
= 1

2

(
e2h log(1 + w)− e−2h log(1− w)

)
− 1

4 (eh − e−h)2w. (9)

As expected, for h = 0 we obtain tanh−1, and for h 6= 0
this mapping skews tanh−1. The important property is, that
s2 is strictly monotone since s′2(s1(θ)) = s′(θ − h) > 0.
We can recover s1 via s1(x) = s−1

2 (s(θ)), but that seems to
be a non-interpretable expression in this case.

3. AdaSTE: the case µα < 1

As in the previous section we focus on one scalar weight
θj /wj and omit the subscript j in the following. We know
that the actual weight w is obtained via

w∗ = Π[−1,1]

(
θ + µ(1 + α) sgn(θ)

1 + µ

)
ŵ = Π[−1,1]

(
θ̃ + µ(1 + α) sgn(θ̃)

1 + µ

)
, (10)

where θ̃ = θ−β`′. We focus on θ < 0, since the case θ > 0
is symmetric. Hence,

w∗ =

{
−1 if θ ≤ −1 + µα
θ−µ(1+α)

1+µ if θ ∈ (−1 + µα, 0)
(11)

and

ŵ =

{
−1 if θ̃ ≤ −1 + µα
θ̃−µ(1+α)

1+µ if θ̃ ∈ (−1 + µα, 0)
. (12)

We are now interested in values for β > 0 maximizing |ŵ−
w∗|/β. We assume that µα < 1, since the simpler setting
µα ≥ 1 was discussed in the main paper.

Case `′ > 0: We have θ̃ = θ − β`′ < θ for all β > 0.
Since ŵ will be clamped at −1 for sufficiently large β > 0,
the solution for β satisfies

θ − β`′ ∈ (−1 + µα, 0). (13)

If θ ≤ −1+µα, then we havew∗ = ŵ = −1 for all choices
of β, and therefore (ŵ − w∗)/β = 0 regardless of β. Thus,
we assume that θ > −1 + µα and therefore w∗ > −1. For
β constrained as above, we have

ŵ − w∗

β
=

1

β
· θ − β`

′ − µ(1 + α)− (θ − µ(1 + α))

1 + µ

=
1

β
· β`′

1 + µ
=

`′

1 + µ
,

which is independent of the exact value of β as long it is in
the allowed range,

β ∈ 1
`′ (θ, θ + 1− µα) ∩ R≥0. (14)

We can set β as follows,

β = min

{
βmax,

θ + 1− µα
`′

}
and the error signal is given by (ŵ − w∗)/β = `′/(1 + µ).

Case `′ < 0: This means that θ̃ > θ for β > 0. By
inspecting the piecewise linear (and monotonically increas-
ing) mapping θ 7→ w∗ we identify two relevant choices for
β: β1 as the smallest β such that ŵ is clamped at +1, and
β0 as the smallest β such that ŵ is positive. Note that θ̃ is
clamped at +1 whenever θ̃ > 1− µα. Therefore the defin-
ing constraints for β1 and β0 are given by

θ − β1`
′ = 1− µα θ − β0`

′ = 0+,

2

i.e. β1 = (θ − 1 + µα)/`′ and β0 = θ/`′ (and β1 > β0

by construction). If θ̃ = 0+, then ŵ = µ(1 + α)/(1 + µ).
Consequently,

ŵ1 − w∗

β1
=

`′

θ − 1 + µα

(
1−max

{
−1,

θ − µ(1 + α)

1 + µ

})
ŵ0 − w∗

β0
=
`′

θ

(
µ(1 + α)

1 + µ
−max

{
−1,

θ − µ(1 + α)

1 + µ

})
.

If θ ≤ −1 + µα such that w∗ = −1, then these expressions
simplify to

ŵ1 − w∗

β1
=

2`′

θ − 1 + µα
> 0

ŵ0 − w∗

β0
=
`′

θ
· µ+ µα+ 1 + µ

1 + µ
=
`′(1 + 2µ+ µα)

(1 + µ)θ
> 0.

Now (ŵ1 − w∗)/β1 > (ŵ0 − w∗)/β0 iff

2`′

θ − 1 + µα
>
`′(1 + 2µ+ µα)

(1 + µ)θ

⇐⇒ 2

θ − 1 + µα
<

1 + 2µ+ µα

(1 + µ)θ

⇐⇒ 2(1 + µ)θ < (θ − 1 + µα)(1 + 2µ+ µα)

⇐⇒ (1− µα)(θ + 1 + 2µ+ µα) < 0

⇐⇒ θ < −1− 2µ− µα.

Visual inspection shows that β0 a good solution even when
β1 is the maximizer: β0 does not maximize the slope (ŵ −
w∗)/β, but its slope is close to the maximal one.

If θ ∈ (−1 +µα, 0), then w∗ = (θ−µ(1 +α))/(1 +µ)
and therefore

ŵ1 − w∗

β1
=

`′

θ − 1 + µα

(
1− θ − µ(1 + α)

1 + µ

)
=

`′

θ − 1 + µα
· 1 + µ− θ + µ(1 + α)

1 + µ

ŵ0 − w∗

β0
=
`′

θ
· µ(1 + α)− θ + µ(1 + α)

1 + µ
.

(ŵ1−w∗)/β1 > (ŵ0−w∗)/β0 iff (after dividing both sides
by 1 + µ > 0)

(1 + 2µ+ µα− θ)`′

θ − 1 + µα
>

(2µ(1 + α)− θ)`′

θ

⇐⇒ 1 + 2µ+ µα− θ
θ − 1 + µα

<
2µ(1 + α)− θ

θ

⇐⇒ (1 + 2µ+ µα− θ)θ < (2µ(1 + α)− θ)(θ − 1 + µα)

⇐⇒ 2µ(1− µα)(1 + α) < 0

The l.h.s. is always positive under our assumptions, there-
fore β0 = θ/`′ is the maximizer in this case.

4. Proof of Proposition 1

Proposition 1. Let E(w; θ) = G(w) − w>θ and w∗ =
arg minw E(w; θ) be explicitly given as w∗ = ~s(θ). Then

ŵ = ~s
(
θ − ~β � `′(w∗)

)
. (15)

Proof. We simply absorb the linear perturbation term into
θ, yielding θ̃ := θ − ~β � `′(w∗), and therefore ŵ solves

ŵ = arg minwG(w)− w>θ̃ = arg minw E(w; θ̃). (16)

Hence, ŵ = ~s(θ̃) = ~s(θ − ~β � `′(w∗)) as claimed.

5. Convergence analysis of AdaSTE

We use the following assumptions:

1. ` is bounded from below and has a Lipschitz gradient
with Lipschitz constant L.

2. s is monotonically increasing and is M -Lipschitz con-
tinuous.

Both assumptions are often violated (since e.g. the stan-
dard cross-entropy loss is not bounded from below, and
our choice for s is not Lipschitz continuous). The respec-
tive convergence analysis of ProxQuant and mirror descent
shares similar limitations.

The first assumption implies that

`(w′) ≥ `(w) +∇`(w)>(w′ − w) + L
2 ‖w

′ − w‖2. (17)

Let θ(t) be the latent weights in iteration t, and w(t) :=
~s(θ(t)). We abbreviate ∇`(w(t)) as g(t). Thus, w∗ = w(t)

and ŵ in iteration t is given element-wise by

ŵ
(t)
j = s(θ

(t)
j − βjg

(t)
j) = w

(t)
j − α

(t)
j βjg

(t)
j (18)

for some α(t)
j ≥ 0 (due to the monontonicity of s). More-

over, using (M26) we identify α(t)
j as (generalized) deriva-

tive of s at a perturbation of θ(t). Since s is monotone
and Lipschitz continuous, we deduce that α(t)

j ≤ M (or

α
(t)
j ≤ min(1,M) in view of the gradient clipping de-

scribed in Section 4.5 in the main text). Consequently,

θ
(t+1)
j = θ

(t)
j −

ηt
βj

(
w

(t)
j − ŵ

(t)
j

)
= θ

(t)
j − ηtαjg

(t)
j .

(19)

Again, due to the monotonicity of s we deduce that

(w(t+1) − w(t))>g(t) = (s(θ(t+1))− s(θ(t)))>g(t) ≤ 0,
(20)

3

0 25 50 75 100 125 150 175 200

Epoch

0

10

20

30

40

50

60

70

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

Ours (w/ annealing)

BayesBiNN

BinaryConnect

MD-tanh

0 25 50 75 100 125 150 175 200

Epoch

0

10

20

30

40

50

60

70

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

Ours (w/ annealing)

BayesBiNN

MD-tanh

BinaryConnect

Figure 1. Testing accuracy achieved by the methods for the first 200 epochs with ResNet-18 (left) VGG16 (right) for CIFAR100 dataset.

0 25 50 75 100 125 150 175 200

Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

in
in

g
L

os
s

Ours (w/o annealing)

Ours (w/ annealing)

BayesBiNN

0 25 50 75 100 125 150 175 200

Epoch

1

2

3

4

T
ra

in
in

g
L

os
s

Ours (w/o annealing)

Ours (w/ annealing)

BayesBiNN

Figure 2. Training loss of the methods for the first 200 epochs with ResNet-18 (left) and VGG16 (right) on the CIFAR100 dataset.

and w(t+1) − w(t) is thus a descent (but not necessarily the
gradient) direction of ` at w(t). We have even something
stronger:

w
(t+1)
j − w(t)

j = −ηtγjg(t)
j (21)

for γj ≥ 0. In order to guarantee a reduction of ` in each
iteration, we require that each term in

∇`(w(t))>(w(t+1) − w(t)) + L
2

∥∥∥w(t+1) − w(t)
∥∥∥2

=
∑
i

(
g

(t)
j (w

(t+1)
j −w(t)

j) + L
2

(
w

(t+1)
j −w(t)

j

)2
)

(22)

is non-positive. Recall that

g
(t)
j · (w

(t+1)
j − w(t)

j) ≤ 0 (23)

from above. Hence, each term can be written as

A
(t)
j := g

(t)
j (w

(t+1)
j −w(t)

j) + L
2

(
w

(t+1)
j −w(t)

j

)2

=− |g(t)
j | · |w

(t+1)
j −w(t)

j |+ L
2

(
w

(t+1)
j −w(t)

j

)2

.

(24)

Observe that A(t)
j is a quadratic function in w(t+1)

j , and it

is 0 for w(t+1)
j = w

(t)
j and decreases monotonically until

w
(t+1)
j = w

(t)
j − g

(t)
j /L (where A(t)

j reaches its minimum
value). Therefore we require that

|w(t+1)
j − w(t)

j | ≤ 1
L |g

(t)
j |. (25)

We employ the Lipschitz assumption on s and obtain,

|w(t+1)
j − w(t)

j | ≤M |θ
(t+1)
j − θ(t)

j | = Mηtα
(t)
j |g

(t)
j |.

If we choose

ηt = min
j

1

LMαj
=

1

LM
· 1

maxj α
(t)
j

, (26)

then

|w(t+1)
j − w(t)

j | ≤Mηtα
(t)
j |g

(t)
j | =

α
(t)
j

Lmaxj′ α
(t)
j′

|g(t)
j |

≤ 1
L |g

(t)
j | (27)

as required. By recalling that α(t)
j ∈ [0,min(1,M)] (using

Lipschitz continuity of s and gradient clipping) we realize

4

that

max
j
α

(t)
j ≤ min(1,M)

=⇒ 1

maxj α
(t)
j

≥ 1

min(1,M)
≥ 1, (28)

and ηt can in fact simply be chosen as

ηt =
1

LM
. (29)

With this universal choice of ηt we read

|w(t+1)
j −w(t)

j | ≤Mηtα
(t)
j |g

(t)
j | =

α
(t)
j

L |g
(t)
j | ≤ 1

L |g
(t)
j |

due to α(t)
j ∈ [0, 1]. Thus, we obtain the first (and main)

result: the sequence of objective values (`(w(t)))t=1,... is
non-increasing.

The value of A(t)
j is given by

A
(t)
j = −|g(t)

j | · |w
(t+1)
j −w(t)

j |+ L
2

(
w

(t+1)
j −w(t)

j

)2

= −α
(t)
j

L |g
(t)
j |

2 +
(α

(t)
j)2

2L |g(t)
j |

2

=
α

(t)
j

(
α

(t)
j −2

)
2L · |g(t)

j |
2 ≤ 0. (30)

Summing over j and t yields (using the boundedness of `
from below in the first relation)

−∞ < `(w(T))− `(w(0)) ≤
∑T

t=1

∑
j
A

(t)
j ≤ 0, (31)

which implies that A(T)
j → 0 for T →∞. Thus, g(T)

j → 0

or α(T)
j → 0. In the first case the target loss ` is sta-

tionary w.r.t. wj , i.e. ∂
∂wj

`(w(T)) → 0. In the second

case α
(T)
j → 0 implies that s is behaving constant (as

ŵ
(T)
j → w

(T)
j and therefore the finite differences anchored

at θ(T) vanish). Hence, a solution θ(∞) = limT→∞ θ(t) is
(component-wise) either stationary w.r.t. ` or w.r.t. s. If s
is differentiable (in addition to being Lipschitz continuous),
then this is analogous to the standard first-order optimality
condition,

`′
(
s(θ(∞))

)
· s′(θ(∞)) = 0. (32)

6. Imagenette Results and Mixup
In order to further justify if our model also works well

on images at higher resolution, we conduct the same ex-
periment on Imagenette dataset [3] which are sampled from
Imagenet [1] without being downsampled and consists of
9469 training images and 3925 validation images. Besides,
we also notice that mixup [2], a proven effective training

trick, is also helpful in further boosting the classification
accuracy. As can be seen in Table 1, it is quite obvious
that our AdaSTE consistenly outperforms BayesBiNN on
both TinyImageNet and Imagenette datasets with and with-
out mixup.

TinyImageNet
ResNet-18

Imagenette
ResNet-18

BayesBiNN 54.22 78.19
BayesBinn (mixup) 55.84 79.59
AdaSTE 54.92 79.66
AdaSTE (mixup) 56.11 80.91

Table 1. Classification accuracy for different methods on Tiny Im-
agenet and Imagenette: Annealing is applied to our model with
and without mixup

7. Implementation Details
We implemented our AdaSTE algorithm in PyTorch, on

top of the framework provided by BayesBiNN. In particular,
we used SGD with momentum of 0.9 for all experiments.

• For CIFAR-10 and CIFAR-100 datasets, we used batch
size of 128 with learning rate of 10−5.

• For TinyImageNet, the chosen batch size was 100 with
the learning rate of 10−6.

The experimental results for BayesBiNN were produced
with the following hyper parameters:

• Batch size: 128.

• Learning rate: 3× 10−4.

• Momentum: 0.9.

8. CIFAR-100 Results
Similar to Fig. 3 and Fig. 4 in the main paper, in Fig. 1

and Fig. 2 (of this supplementary material), we also show
the test accuracy and training loss versus number of epochs
for the CIFAR-100 dataset with ResNet-18 and VGG-16 ar-
chitectures. The same conclusion can also be drawn, where
AdaSTE can quickly achieve very good performance, while
it takes longer for other methods to yield high accuracy.
This emphasizes the advantage of our method compared to
existing approaches.

9. Training AdaSTE and BayesBiNN for a
larger number of epochs

In Table 1 in the main paper, we report results obtained
after training BayesBiNN and AdaSTE for 500 epochs. In

5

0 100 200 300 400 500 600 700

Epoch

20

40

60

80

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

BayesBiNN

0 100 200 300 400 500 600 700

Epoch

20

40

60

80

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

BayesBiNN

0 100 200 300 400 500 600 700

Epoch

20

40

60

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

BayesBiNN

0 100 200 300 400 500 600 700

Epoch

0

20

40

60

T
es

ti
n

g
A

cc
u

ra
cy

Ours (w/o annealing)

BayesBiNN

Figure 3. Testing accuracy achieved by the AdaSTE (no annealing) and BayesBiNN for 700 epochs. Top: CIFAR-10 with ResNet-18 (left)
and VGG16 (right)

Fig. 3 (of this supplementary material), we further show the
progress of BayesBiNN and AdaSTE after training for 700
epochs. As can be seen, the performance of both Bayes-
BiNN and AdaSTE can still be improved, and BayesBiNN
slowly approaches the performance of AdaSTE.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, pages 248–255, 2009. 5

[2] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In CVPR, pages 558–567,
2019. 5

[3] Jeremy Howard and Sylvain Gugger. Fastai: a layered api for
deep learning. Information, 11(2):108, 2020. 5

6

	. Algorithmic Comparison between AdaSTE, ProxQuant and Mirror Descent
	. A Mirror Descent Interpretation of AdaSTE
	. AdaSTE: the case <1
	. Proof of Proposition 1
	. Convergence analysis of AdaSTE
	. Imagenette Results and Mixup
	. Implementation Details
	. CIFAR-100 Results
	. Training AdaSTE and BayesBiNN for a larger number of epochs

