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S1. Data Selection and Sampling Process

Overlapped positive selection. In this study, we use the
‘clean’ subset [ 18] of Google Landmarks dataset v2 (1.58M
images from 81k landmarks) [16] as a training set. This
dataset has large intra-class variability and includes multi-
ple viewpoints, such as indoor and outdoor views of land-
marks. Therefore, when sampling the same-class image
pair from this dataset, we cannot guarantee an overlap be-
tween the two images, and non-overlapping query-positive
pairs can interfere with learning image matching. To avoid
the non-overlapping case, we select overlapped pairs for
each class in advance with the help of the DELF [9] local
feature. The overall process is similar to the data cleaning
process of [18]: The primary difference is that [18] aims
to remove outlier data from the dataset, whereas we aim
to select same-class pairs that actually overlap. To select
an overlapped pair, for every dataset sample x;, we first
select up to ten of the nearest neighbors that are assigned
to the same class as x; with a global descriptor extracted
from R50-CVNet-Global. After the nearest neighbors are
selected, spatial verification using RANSAC with a pre-
trained DELF feature is performed on the nearest neigh-
bors selected for each sample. Subsequently, we select the
pair with 30 or more inlier matches as an overlapped pair.
Furthermore, only classes with more than 10 samples be-
longing to overlapped pairs are used for training. Finally,
we select 1M images from 31k landmarks of the GLDv2-
clean dataset and use this subset as a training set for CVNet-
Rerank. Although this selection process is quite expensive
because of the use of RANSAC, it only needs to be per-
formed once.

Sampling process. CVNet-Rerank is trained for 200
epochs (6.3M steps) for all selected classes. For every
epoch, we construct tuples of query, positive, and negative
samples for each class. The query image is randomly sam-
pled from each class, a positive image is randomly chosen
from among the overlapped positives of the query, and a
negative image is sampled from random or hard-negative
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Figure S1. Example of query, overlapped positive, and hard nega-
tive samples sampled from the selected subset of the GLDv2-clean
dataset. Our proposed re-ranking network learns better discrimina-
tion ability by learning the cue for equivalence from a overlapped
positive and the cue for the difference from a hard negative.
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Figure S2. Analysis about number of samples to re-rank.

Medium Hard Medium Hard
rerank 7 rerank  Ppgs
ROxf +IM RPar +1M ROxf +IM RPar +IM ROxf +IM RPar +IM ROxf +1M RPar +IM
0 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2 0 81.0 72.6 88.8 79.0 62.1 502 76.5 60.2

00 81.6 72.8 88.8 79.0 62.6 50.2 76.6 60.3
1.0 855 77.1 89.3 80.0 70.8 59.5 77.5 63.7

100 05 855 773 892 79.8 715 60.5 779 634
0.2-1.0 86.1 77.6 894 799 728 61.1 78.6 63.9

00 815 727 88.8 79.0 62.6 50.1 76.7 60.4

200 1.0 862 782 89.5 81.1 71.5 60.7 76.5 653
05 864 784 89.7 80.8 73.1 62.0 78.7 653

0.2-1.0 87.2 78.9 90.0 81.2 74.5 629 79.5 66.0

00 814 726 889 79.1 62.6 50.1 77.1 60.6

400 1.0 862 795 885 81.8 71.0 62.0 74.0 65.5

05 869 79.8 90.3 82.0 74.0 639 79.5 66.7
0.2-1.0 87.9 80.7 90.5 824 75.6 65.1 80.2 67.3

Table S1. Hard-Negative Sampling Ratio.

samples according to the hard negative sampling ratio 7.
Fig. S1 shows examples of our sampling results. By learn-
ing with well-constructed training pairs, the network can
achieve improved discriminating ability.

S2. Additional Ablation Studies and Analysis
S2.1. Curriculum Learning

Learning focused on hard samples can improve the ro-
bustness of the network in hard situations. However, this
could lead to a loss of generality. Accordingly, we apply
curriculum learning to focus on hard samples without los-
ing generality. In this subsection, we show that the proposed
network performs re-ranking well regardless of the match-
ing difficulty with the help of curriculum learning. Fur-
thermore, we show a more detailed analysis of curriculum
learning.

Generality of learning (Fig. S2). By gradually increas-
ing the number of samples to be re-ranked, we can ver-
ify whether the network distinguishes hard samples well

00 858 77.5 893 799 71.6 60.5 78.1 63.7
100 02 861 77.1 89.3 79.9 723 60.1 78.1 63.6
0.0-0.2 861 77.6 89.4 799 72.8 61.1 78.6 63.9
00 869 787 897 81.0 734 62.1 78.6 65.6
200 02 87.1 783 89.7 81.1 740 61.8 78.7 65.7
0.0-02 872 789 90.0 81.2 745 629 795 66.0

00 875 803 89.9 820 742 643 789 664
02 87.8 80.1 90.1 822 751 64.0 79.3 66.8
0.0-02 87.9 80.7 90.5 824 75.6 65.1 80.2 67.3

Table S2. Hide-and-Seek Probability.

400

while retaining generality for normal samples. As shown in
Fig. S2, the proposed re-ranking network dramatically im-
proves performance when it is applied to top ranks where
many hard samples exist. Even if the re-ranking targets are
expanded to easier samples, our proposed re-ranking model
continues to exhibit improved performance without losing
generality.

Hard negative mining (Tab. S1). To prove the effective-
ness of hard negative mining applied simultaneously with
the curriculum approach, we conduct experiments by vary-
ing the hard-negative sampling ratio rz. The results are
presented in Tab. SI. When the network learns using ran-
domly sampled negatives (rg = 0), global retrieval results
do not improve when re-ranking. This indicates that learn-
ing to discriminate hard samples using only random neg-
ative is difficult. Accordingly, when sampling hard nega-
tives with a fixed ratio (rg =1.0, 0.5), the network exhibits
a significantly improved performance. Moreover, when a
hard-negative ratio is set through the curriculum manner
(rg = 0.2-1.0), the proposed re-ranking network exhibits
its best performance. This proves that hard negatives are a
critical key to re-ranking learning, and hard negative mining



Medium Hard
ROxf +1M RPar +1M ROxf +IM RPar +1M

Medium Hard
ROxf +IM RPar +IM ROxf +IM RPar +I1M

#  type

0 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

0 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

16 854 763 89.2 79.7 709 579 715 625

32 855 76.5 892 798 71.7 59.7 77.6 63.1

64 854 768 89.3 799 71.6 602 77.6 63.3

100 128 855 769 893 799 714 60.0 779 63.6
256 86.1 77.6 89.4 799 72.8 61.1 78.6 63.9

512 85,5 769 893 799 713 59.7 77.8 63.7
1024 85.7 773 89.4 80.0 71.6 59.7 78.1 63.7

16 862 772 89.6 80.5 719 588 78.1 63.9
32 865 77.6 89.6 80.7 732 61.1 78.1 645
64 862 77.9 89.7 80.9 72.9 61.3 77.9 64.9
200 128 864 78.0 89.9 812 72.8 612 78.6 65.5
256 87.2 789 90.0 812 74.5 62.9 79.5 66.0
512 863 77.9 89.8 81.1 72.6 61.0 784 65.6
1024 86.5 78.6 89.9 81.1 72.6 61.2 79.1 65.5
16 865 784 89.9 812 723 602 785 64.5
32 870 79.1 89.7 815 74.1 63.0 782 65.1
64 867 79.3 89.8 81.7 73.6 633 78.1 656
400 128 87.0 79.6 90.1 82.1 73.5 632 789 66.3
256 87.9 80.7 90.5 824 75.6 65.1 802 67.3
512 86.6 79.3 90.0 82.0 73.1 628 78.5 663
1024 87.0 80.1 90.3 82.1 734 63.0 79.6 66.6

Table S3. Channel Compression.

is even more effective when used with curriculum learning.

Hide-and-Seek (Tab. S2). Similarly, to prove the effec-
tiveness of the Hide-and-Seek [13] augmentation, we con-
duct experiments by varying the Hide-and-Seek probability
DPhas- Tab. S2 also shows that Hide-and-Seek is an appro-
priate strategy to help re-ranking learning and that it can be
even more effective when used with curriculum learning.

S2.2. Memory Footprint Reduction

Despite having significant potential, the proposed re-
ranking method possesses a large memory owing to its
dense nature. In this subsection, we present several effective
solutions for reducing the memory footprint of the proposed
re-ranking model.

Channel compression (Tab. S3). We pre-extract and
store a multi-scale feature pyramid for every database sam-
ple for online re-ranking, which is where memory consump-
tion primarily occurs. To reduce the memory footprint of
the proposed model, we compress the channel of the feature
map C; to C] using a 3 x 3 convolution layer in the pro-
cess of constructing the multi-scale feature pyramid. Here,
we conduct experiments by varying the compressed chan-
nel dimension CY, to find a balance between memory foot-
print and re-ranking performance. The results are presented
in Tab. S3. When the C] is 256, the proposed re-ranking
model exhibited its best performance; therefore, we finally
selected C] as 256 in our study. However, on systems where
memory management is more important, choosing a smaller

float32 86.1 77.6 89.4 799 728 61.1 78.6 63.9
int8§ 86.1 77.6 894 799 727 61.1 78.6 63.9

100 int4 860 77.3 8.3 79.8 725 60.5 78.0 63.5

float32 87.2 78.9 90.0 81.2 74.5 62.9 79.5 66.0
int§ 87.2 789 90.0 81.2 745 62.8 79.5 66.0

200 int4 86.9 78.6 89.7 81.0 73.8 62.1 78.7 65.3
float32 87.9 80.7 90.5 824 75.6 65.1 80.2 67.3
400 int8 87.9 80.6 90.5 824 755 65.1 80.2 67.3
int4 874 80.1 90.1 82.0 74.6 63.8 79.3 66.3
Table S4. Feature Quantization.
Medium Hard

# layer
ROxf +1M RPar +1M ROxf +1M RPar +1M
0 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

f3 86.1 77.6 89.4 799 72.8 61.1 78.6 63.9
100 f; 854 76.0 8.2 79.8 69.0 56.2 76.7 63.0
fuse 852 76.8 893 799 69.6 57.6 77.0 63.2
fz 872 789 90.0 81.2 745 629 79.5 66.0
200 f; 85.8 7677 89.2 80.7 69.7 57.0 755 63.8
fuse 854 77.5 89.4 809 69.8 582 758 64.0
f3 879 80.7 90.5 824 75.6 65.1 80.2 67.3
400 fy 86.0 77.7 882 809 69.8 58.0 73.7 63.2
fuse 85.1 783 882 809 68.9 583 74.0 63.3

Table S5. Feature Extraction Layer Selection.

dimension, such as 16 (ﬁ of our model’s memory foot-
print) or 32 (% of our model’s memory footprint) can be
a good option. This quantization reduces the memory foot-
print even further, albeit at the cost of a marginally reduced
performance.

Quantization (Tab. S4). To reduce the memory burden,
we measured the re-ranking performance while taking the
correlation of quantized features as an input. The results
are presented in Tab. S4. Similar to the case of channel
compression, feature quantization also reduces the memory
footprint at the risk of marginal performance degradation.

S2.3. Model Design and Parameter Selection

In this subsection, we present several analyses of the de-
sign of the re-ranking model and its parameter selection.

Feature extraction layer selection (Tab. S5). First, we
analyze CVNet-Global to determine which of its stages is
more suited for use as an input for the re-ranking network.
The results are presented in Tab. S5. f; denotes the ith Res-
Block. When receiving an output of fy as an input, the stride
and kernel size in the first block are reduced by 1 and 3,
respectively; therefore, the output resolution is identical to
that when an output of f3 is received as an input. In the
”fuse* case, both the output feature maps of f5 and f4 are
received as input. In this case, the outputs of f3 and f, pass
through the first two convolutional blocks separately and
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Figure S3. Experiments about the score fusion weight a. « is tuned in ROxf-Hard (Fig. S3a)/RPar-Hard (Fig. S3b) and fixed for
ROxf-Hard+1M (Fig. S3c)/RPar-Hard+1M (Fig. S3d). We finally set an « to 0.5.

Scale Medium Hard
14 % ROXf +IM RPar +IM ROxf +IM RPar +IM

0 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

849 76.1 88.8 793 69.9 574 763 6l.1
v 858 77.1 89.3 80.0 715 59.8 783 63.9
v 857 773 893 799 71.1 59.9 78.0 63.4
v v 861 77.6 894 799 728 61.1 78.6 63.9
853 767 88.9 79.5 70.5 583 763 61.5
v 86.6 782 90.0 812 72.8 613 79.0 66.0
86.5 78.5 89.9 81.0 722 61.1 78.7 653
v v 872 789 90.0 812 74.5 629 79.5 66.0
855 77.6 89.0 79.7 70.7 593 764 61.6
v 87.1 79.9 90.3 824 73.6 634 793 67.2
v 87.0 802 903 82.0 72.9 63.1 79.0 66.4
v v 879 807 90.5 824 75.6 65.1 802 67.3

Table S6. Scale Selection.

#

100

200

400
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\

merged, and finally pass through the remaining blocks. As
in many studies [1, 9, 17] utilizing local information, using
the output of f5 as an input results in the best performance;
thus, we select the feature map from f3 as the input of the
re-ranking network.

Scale selection (Tab. S6). We conduct experiments with
a selection of scales to construct a multi-scale feature pyra-
mid. Note that a high-scale feature can be helpful in terms
of performance. However, considering the limitation of
time and memory, we only scale the feature to a lower scale.
The results show that constructing a cross-scale correlation
using several scales has a clear performance advantage over

Medium Hard
# kernel
ROxf +1M RPar +1M ROxf +1M RPar +1M
0 81.0 72.6 88.8 79.0 62.1 502 76.5 60.2
100 asymmetric 86.1 77.6 89.4 79.9 72.8 61.1 78.6 63.9

symmetric 85.2 76.8 89.3 799 69.6 57.6 77.0 63.2

asymmetric 87.2 78.9 90.0 81.2 74.5 629 79.5 66.0
symmetric 854 77.5 89.4 809 698 582 758 64.0

asymmetric 87.9 80.7 90.5 824 75.6 65.1 80.2 67.3
symmetric 85.1 783 882 809 689 583 740 63.3

Table S7. Kernel Symmetrization.

200

400

the single-scale feature correlation method. Based on the
experimental results, we finally select S = 3 scales.

Symmetric kernel (Tab. S7). Image similarity is essen-
tially permutation-invariant, except in special cases. When
we train a 4D convolutional network to predict image
similarity, we can induce the network to be permutation-
invariant in several ways. For instance, we can set the loss
function to ensure that the output does not vary regardless
of the input order. Another method is to make the 4D con-
volution kernel symmetrical. We experiment with the latter
case as shown in Tab. S7. However, forcing the kernel to
be symmetric did not yield good performance. Therefore,
in this study, we softly induce permutation-invariant prop-
erties in the re-ranking network using loss symmetrization.

Score fusion weight (Fig. S3). To simultaneously verify
the global and local relationships between two images, we
re-rank the retrieval results based on the combined score
8¢ + as,, where s is the cosine similarity of the global de-



Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +IM
0 Global 81.0 72.6 88.8 79.0 62.1 502 76.5 60.2
0 aQE 854 77.5 90.7 83.5 67.5 57.8 79.8 66.9
100 (&A% 86.1 77.6 894 799 728 61.1 78.6 639
200 (&A% 87.2 78.9 90.0 812 745 629 79.5 66.0
400 (&A% 879 80.7 90.5 824 75.6 65.1 80.2 67.3
0 aQE 854 77.5 90.7 83.5 67.5 57.8 79.8 66.9
100 aQE+CV 88.0 80.5 909 84.1 74.6 652 809 70.0
200 aQE+CV 88.8 82.1 91.2 849 759 674 816 71.5
400 cQE+CV 89.3 82.8 91.6 853 77.1 68.6 82.2 70.7

Table S8. Comparison with alphaQE.

# layer

scriptors, s, is the output score of the re-ranking network,
and « is the given weight for the re-ranking network out-
put score s,.. Parameter « is tuned in ROxf/RPar and fixed
for a large-scale experiment and GLDv2-retrieval test, as
in previous studies [1, 8, 12, 15]. Fig. S3a and Fig. S3b
shows ROxf-Hard/RPar-Hard performances according to
score fusion weight o. In these results, the re-rank score
significantly improves the retrieval performance even if an
extremely small re-rank score is added to the global descrip-
tor matching score. Moreover, the best performance corre-
sponded to an « value of 0.5. Based on these experimental
results, we set & = 0.5 for the re-ranking process.

S2.4. Comparison with Query Expansion

Comparison with «QE (Tab. S8). This study focuses
on improving the image matching ability for single pairs.
Therefore, we have not considered certain re-ranking meth-
ods such as diffusion [2,5] or query expansion [3, | 1], which
require additional expenses to traverse the entire database
mentioned in the main body of this paper. Although we
do not consider them because of their different scopes, in
this subsection we show that these re-ranking methods and
the proposed re-ranking method can be harmoniously fused
when they are used. Specifically, we compared and fused
CV with one of the representative query expansion meth-
ods: a-weighted query expansion (aQE).

In contrast to geometric verification (GV) or our pro-
posed correlation verification (CV), which evaluates the
similarity between two images, the query expansion aggre-
gates the query itself and its top-ranked neighbors across
the dataset and creates an aggregated query to perform re-
ranking. In the aQE method, aggregation is performed with
weighted averaging, and the weight of the ¢th ranked image
is given by (d, - d;)“?E, where d,, is the global descriptor
of the query image and d; is the global descriptor of the ith
ranked image for the query. Finally, the aggregated query
descriptor dy, is computed as follows:

" .d.)eE . d.
g = Gt T (@ d)resdy) o
I+ Zi:l (dq : dz’)aQE

where 7 is the number to aggregates, and agg is a pa-

Medium Hard
ROxf +1M RPar +1M ROxf +1M RPar +1M

576 77,5 70.0 89.8 78.0 557 44.6 779 589
4608 78.5 71.3 89.8 78.7 58.1 464 78.3 59.3
73728 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

Table S9. Queue Size of Momentum Contrastive Loss.

Medium Hard
ROxf +IM RPar +1M ROxf +IM RPar +1M

Loss

SupCon [6] (Eq. (S2)) 79.9 72.1 894 789 59.1 48.6 774 59.3
Ours (Eq. (S3)) 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2

Table S10. Comparison with SupCon Loss.

rameter that amplifies or reduces the weight. n and agg
are tuned in ROx{/RPar over the ranges: n € [1,20] and
agp € [0.1,2.0] and we finally set them to 5 and 2.0, re-
spectively. Tab. S8 shows the re-ranking results using aQE,
the re-ranking results using CV, and the re-ranking results
using a«QE and CV sequentially. For all settings, CV ex-
hibits performance that is superior to the «QE method, and
even more superior when fused with the «QE method.

S2.5. Momentum Contrastive Loss Analysis

Queue size (Tab. S9). Our global backbone network,
CVNet-Global, constructs a queue to store and leverage nu-
merous samples for contrastive learning. Because queue
size is one of the crucial factors that is directly related to
the number of contrastive samples, we conduct experiments
by varying the queue size K. Tab. SO shows performances
for different queue sizes. Overall, our global model benefits
from a large K value. A large queue size implies that sev-
eral contrastive samples can be utilized, which can lead the
global model to learn a more generalized representation.

Differences in SupCon loss (Tab. S10). Our momentum
contrastive loss is similar to SupCon [6] loss. Similar to
the SupCon loss, it performs contrast learning with multi-
ple positives using labels. The primary difference between
these losses is that the SupCon loss assumes a relatively
constant number of positives. However, a large difference
exists in the number of positives for each sample because
of the class imbalance data and queue structure. In SupCon
loss (Eq. (S2)), because all query-positive cosine similari-
ties are included in the denominator, the scale of the loss is
significantly affected by the number of positives:

-1 exp (é(dq -ap,l)/T)
Li=—— Zlog ~ Z Ji 74 ’
|P(q)] vePla) ieP@%JN(q) exp (C (dg -di, ]lq)/T)
(S2)

To solve this scale problem, we design our contrastive
loss (Eq. (S3)) similar to the SupCon loss L. However,
only the target positive p is included in the denominator.




model Medium Hard
(Rerank top-100) ROxf +IM RPar +1M ROxf +IM RPar +1M
R50-DELG' 71.1 604 869 70.9 47.0 32.0 73.6 48.1
+ CVNet-Rerank 78.7 67.7 87.9 723 63.0 46.1 76.8 52.5
R50-DOLGT 79.0 70.0 88.3 76.2 57.5 432 75.0 554
+ CVNet-Rerank 83.7 749 89.0 77.2 69.1 55.7 77.1 59.0

Table S11. Performance with Different Backbones.

model (R50) Medium Hard
(Rerank top-100) ROxf +IM RPar +1M ROxf +I1M RPar +1M
CVNet-Global 81.0 72.6 88.8 79.0 62.1 502 76.5 60.2

+ CorrNet 81.3 72.7 88.8 79.0 623 503 76.5 60.2
+ HNM 84.6 759 89.0 79.3 693 57.0 769 61.1
+CSC 858 77.5 89.3 799 71.6 60.5 78.1 63.7
+ HaS 86.1 77.6 894 799 728 61.1 78.6 63.9

Table S12. Module Ablation Study.

-1 exp (C_(dq -ap,l)/r)
Econ =T/ N 1 4 o - > .
()| 2 log > exp(C(dl-di,1:)/7)
ic{ptUNQ
(S3)

Tab. S10 shows the results of training CVNet-Global us-
ing each of the two losses. When using the proposed con-
trastive loss L., , the results are more stable than when us-
ing SupCon loss L.

S2.6. Performance with Different Backbones

Tab. S11 shows the results when CVNet-Rerank is com-
bined with the standard global models, DELG and DOLG
(both reproduced’). Both models are trained using the set-
tings of the original paper except for setting the maximum
number of epochs to 25 epochs. Afterward, the proposed
CVNet-Rerank is trained with each global backbone. As
shown in Tab. S11, CVNet-Rerank also works well when
combined with other global backbones.

S2.7. Module Ablation Study

Tab. S12 shows the results when the components of
CVNet-Rerank are added to CVNet-Global one by one.
From the Tab. S12, we can see that when the Correlation en-
coding Network (CorrNet) is added, the accuracy is slightly
improved but when Hard Negative Mining (HNM) is ap-
plied, the accuracy is significantly improved. From the ob-
servation, we can see that the correlation encoding network
and hard negative mining is a good combination but the net-
work is quite hard to train if the hard negative mining is
not used. Based on our experience, when we train the net-
work on random negatives without hard negative mining,
the training is dominated by the very rare high correlations
between the query and the random negatives degrading the
accuracy. To prevent the degradation, we have to train the
network using hard negative mining. In summary, we can
say that the correlation encoding network and hard negative
mining is the core component of the CVNet-Rerank, and

Output of Block 3

Query Image

Target Point

Figure S4. Intermediate Feature Visualization. Our network
naturally learns the correct geometric relationship of dense match-
ing and pays attention to the correct position by compressing the
surrounding matching information from the 4D correlation.

Intermediate
activation

the combination significantly improves the accuracy. Cross-
Scale Correlation (CSC) and Hide-and-Seek (HaS) are the
optional choices that can incrementally improve the accu-
racy of the re-ranking network.

S3. Intermediate Feature Visualization

We visualize the intermediate features of our re-ranking
model to see how the network interprets and compresses
the correlation. To visualize the intermediate 4D features,
we select one target point from the query side and visual-
ize the magnitude of the corresponding feature parts on the
key side. The visualized results are presented in Fig. S4. In
Fig. S4, we observe that the model focus on the correct posi-
tion by compressing the surrounding matching information
from the 4D correlation. As shown in the results, the net-
work naturally learns the geometric pattern of dense match-
ing without any predefined geometric model (e.g. Affine
model). Additional intermediate feature visualizations are
presented in Fig. S5.

S4. Reproducing Details

For a fair comparison with other re-ranking methods,
we conduct experiments by reproducing other re-ranking
methods based on the global backbone network. We repro-
duce two re-ranking methods: geometric verification (GV)
and Reranking Transformer [14]. Because both methods
are based on the local features of DELG, we attach the
local branch of DELG [!] to our global backbone (R50-
CVNet-Global) to learn the local features of DELG. All
local-feature-related settings are identical to those in the
DELG [!]. During testing, we extract a maximum of 1000
local features (500 for RRT) and use them for the re-ranking
process.

Geometric Verification (GV). We reproduce the GV
based on the DELG. Official code of DELG uses RANSAC
[4], which belongs to the scikit-learn [10] package; how-
ever, we could not improve the re-ranking performance with



this version. Finally, we implement RANSAC using pyde-
gensac [7], which exhibits performance superior to that of
scikit-learn. Additionally, as mentioned in DELG [ 1] paper,
we set a minimum number of inliers to improve re-ranking
performance. We tune the minimum number of inliers over
the range: [10,300], and finally set it to be 100.

Reranking Transformers (RRT). We train the RRT
model with official code provided by [14], and use all the
same settings are as the provided one. The only difference
is that we input the global descriptor extracted from CVNet-
Global and local features extracted from the added local
branch, instead of the features extracted by the pre-trained
DELG model.

S5. Additional Qualitative Results

Additional qualitative results on ROxford5k-Hard+1M,
RParis6k-Hard+1M, and the GLDv2-retrieval-test are
shown in Fig. S6, Fig. S7, and Fig. S8, respectively. The
results show that the proposed re-ranking method performs
re-ranking robustly, even if the global descriptor matching
results in misjudgment in situations involving challenges
such as viewpoint change, occlusion, and truncation.
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Figure S5. Additional Intermediate Feature Visualization.
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Figure S6. Additional qualitative results on ROxfordSk-Hard+1M with R50-CVNet. The upper line is the global descriptor matching
result and the lower line is the re-ranking result. Correct/incorrect results are marked with green/red borders, respectively. The query used
as an input is generated by cropping only the part bounded by a green square. Our purpose is to visualize the difference between global
descriptor matching and re-ranking, so we skip the results of the ranks that are correct in both the global descriptor matching and re-ranking
processes.
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Figure S7. Additional qualitative results on RParis6k-Hard+1M with R50-CVNet. The upper line is the global descriptor matching
result and the lower line is the re-ranking result. Correct/incorrect results are marked with green/red borders, respectively. The query used
as an input is generated by cropping only the part bounded by a green square. Our purpose is to visualize the difference between global

descriptor matching and re-ranking, so we skip the results of the ranks that are correct in both the global descriptor matching and re-ranking
processes.
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Figure S8. Qualitative results on GLDv2-retrieval-test with R50-CVNet. The upper line is the global descriptor matching result and
the lower line is the re-ranking result. Correct/incorrect results are marked with green/red borders, respectively. The last two queries each
have only one positive sample, so we skip the results after the correct answer comes out.
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