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1. Algorithm of FIFO
We present the training procedure of FIFO in Algo-

rithm 1.

Algorithm 1 : Training FIFO
Input: Pretrained fog-pass filtering module for the lth layer:
F l(·), Segmentation network: S(·), Number of layers: L,
Batch size per domain: m, Segmentation prediction: P ,
Segmentation label: Y , Input image set {ICW, ISF, IRF}:
x, Subset of two elements from domain set {CW,SF,RF}:
{a, b} and Segmentation label set {Y CW, Y RF}: y.
Output: Optimized segmentation network S(·).

1: for {1, . . . , # of training iterations} do
2: Sample mini-batch {xi}mi=1

3: for {l←− 1 to L} do
4: LFl ←− LFl({fli}mi=1)
5: Update the fog-pass filtering module F l

6: end for
7: Sample mini-batch {xj}mj=1 and {yj}mj=1

8: Sample the pair {Ia, Ib} ∈ xj

9: for {l←− 1 to L} do
10: {fa,lj }mj=1,←− {F l(ua,l

j )}mj=1

11: {fb,lj }mj=1,←− {F l(ub,l
j )}mj=1

12: Ll
fsm ←− {Ll

fsm(f
a,l
j , fb,lj )}mj=1

13: end for
14: if {a, b} == {CW,SF} then
15: Lcon ←−

∑
i KLdiv(P a

i , P
b
i )

16: end if
17: if {a, b} ∩ {CW,SF} ≠ ∅ then
18: Lseg ←− − 1

n

∑
Y logP

19: end if
20: LS ←−

∑
l Ll

fsm + Lcon + Lseg
21: Update the segmentation network S
22: end for

*This work was done while Taeyoung Son was in POSTECH.

Consequently, the total objective of FIFO is following:∑
l

min
F l
Ll
F l +min

S
(
∑
l

Ll
fsm + Lcon + Lseg), (1)

where l is the layer index.

2. Generalization to Other Weather Conditions

We investigate the generalization ability of FIFO on the
other weather conditions, rainy [7] and frosty [6] versions of
the Cityscapes [2] dataset, according to the severity of the
corruptions. Figure A1 presents the performance of base-
line [9], an ordinary segmentation model trained on clear
weather images, and FIFO on varying the severity of frosty
and rainy corruptions. FIFO tends to be robust to each cor-
ruption than the baseline, even when the corruption gets se-
vere. Table A1 and Table A2 show detailed quantitative re-
sults of baseline and FIFO on frosty and rainy corruptions,
respectively. Additional qualitative results are presented in
Figure A7.

We also evaluate FIFO on ACDC, the real-world adverse
conditions dataset for semantic driving scene understand-
ing. For fair comparisons on ACDC [11], FIFO is trained on
the Cityscapes, Foggy Cityscapes-DBF, and Foggy Zurich
datasets, following the unsupervised learning setting of the
benchmark. As summarized in Table. A3, FIFO outper-
forms the existing foggy scene segmentation methods re-
ported in [11] for all four conditions.

Corruption Severity
1 2 3 4 5

Frost
Baseline 45.53 23.59 14.97 13.60 10.66

FIFO 46.85 30.64 22.66 20.88 17.47

Table A1. Quantitative results on Frosty Cityscapes according to
the severity of corruptions.

http://cvlab.postech.ac.kr/research/FIFO/


10

20

30

40

50

1 2 3 4 5

Frosty Cityscapes

Corruption Severity

m
Io

U
(%

)

50

55

60

65

70

1 2 3

Rainy Cityscapes

Corruption Severity

m
Io

U
(%

)

Ours Baseline

Figure A1. Performance (mIoU) versus the corruption severity.
Ours (FIFO) and baseline are evaluated on Frosty Cityscapes and
Rainy Cityscapes.

Corruption Severity
1 2 3 all

Rain
Baseline 64.03 60.51 54.62 57.60

FIFO 69.01 68.03 65.92 67.62

Table A2. Quantitative results on Rainy Cityscapes according to
the severity of corruptions.

Method Fog Rain Snow Night Avg.

RefineNet 46.4 52.6 43.3 29.0 43.7

SFSU [2] 45.6 51.6 41.4 29.5 42.9

CMAda 51.2 53.4 47.6 32.0 47.1

FIFO 54.1 58.8 51.8 32.5 49.4

Table A3. Quantitative results on the ACDC dataset.

3. Independence Analysis of Fog Factors

In this section, we quantitatively evaluate the indepen-
dence of the fog factors from the image content compared
to that of the Gram matrices from the content. To this end,
we design a content-pass filtering module that is optimized
to extract content-relevant information, which we call con-
tent factors.

Training Content-pass Filtering Module. Let Ia and Ib

be a pair of images from the mini-batch, and Cl denote the
content-pass filtering module attached to the lth layer of the
segmentation network. Let ua,l and ub,l be the vectorized
upper triangular parts of the Gram matrices computed from
the lth feature maps of Ia and Ib. Then the content factors
of the two images are computed by ca,l = Cl(ua,l) and
cb,l = Cl(ub,l). In contrast to the fog-pass filtering module,
this module is optimized to learn an embedding space of
content factors where the pairs having the same content, i.e.,
CW–SF are grouped closely and else pairs are far from each
other. Given the set of every image pairP in the mini-batch,
the loss function for Cl is designed accordingly as follows:

LCl =
∑

(a,b)∈P

{(
1− I(a, b)

)[
m− d

(
fa,l, fb,l

)]2
+

+I(a, b)
[
d
(
fa,l, fb,l

)
−m

]2
+

}
,

(2)

where d(·) is the cosine distance, m is a margin, and I(a, b)
denotes the indicator function that returns 1 if the pair of Ia

and Ib is a CW–SF pair and 0 otherwise, respectively.
Independence Analysis of Fog Factors. We design the
independence score to quantitatively evaluate and compare
the independence of fog factors and that of Gram matri-
ces from content factors. We first measure the score of the
independence of fog factors from content factors. To this
end, we select one image Ii, then choose k images {In}
whose fog factors are most similar to the fog factor fi of
the selected image Ii. Then, we also choose k images {Im}
whose content factors are most similar to the content factor
ci of the selected image Ii. After that, we compute the pro-
portion of the number of overlapped images |{In} ∩ {Im}|
between {In} and {Im}. Then, we repeat the process for
all N images and calculate the average proportion as the
independence score.

Let I , f , and c be an image, a fog factor, and a content
factor, then, the independence score is calculated as follows:

IndependenceScore(F , C) =

1− 1

N

N∑
i=1

1

k

{∣∣{In|fn ∈ F , d(fi, fn) ≤ d(fi, fk)}

∩{Im|cm ∈ C, d(ci, cm) ≤ d(ci, ck)}
∣∣},

(3)

where d(·) and k are a cosine distance and a number of se-
lecting similar factors set to 200, fk and ck are the k th most
similar fog factor from fi and the k th most similar content
factor from ci, where F and C denote the set of fog fac-
tors and content factors, respectively. We then replace the
fog factors with Gram matrices, then repeat the same pro-
cess for calculating the independence score of Gram matri-
ces from the content factors.

Figure A2 presents the independent score of fog factors
and Gram matrices from content factors. Note that the ex-
periment settings and dataset configurations are all the same
as in the main paper. Figure A2 proves that fog factors
are more independent to content factors compared to Gram
matrices, as desired. It indicates that the fog-pass filtering
module extracts only fog-relevant information apart from
the image content.
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Figure A2. Independence score of fog factors and Gram matrices
from content factors.

4. Empirical Verification Using Evaluation
Dataset

We present additional results of the empirical verification
using evaluation splits of the datasets, i.e., Cityscapes (500
images) as CW, Foggy Cityscapes-DBF (500 images) as SF,
and Foggy Zurich-test v2 (40 images) and Foggy Driving
(101 images) as RF. Fig. A3 shows that the tendency of the
results is consistent with that of Fig. 4 of the main paper.
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Figure A3. Results of the empirical verification using the evalu-
ation datasets. (a) t-SNE visualization of distributions of Gram
matrices and their fog factors. (b) Comparison between the qual-
ity of k-means clustering of the fog factors and Gram matrices in
adjusted Rand index. (c) The fog-style gap between different do-
mains before and after training with FIFO.

5. Impact of Fog Factors

We present additional comparison results for the qual-
ity of k-means clustering [5] of the Gram matrices and that
of the corresponding fog factors in other measures, normal-
ized mutual information [4], and adjusted mutual informa-
tion [12]. All of the measures prove the impact of fog fac-
tors in that they are more clustered than Gram matrices ac-
cording to each fog condition as shown in Figure A4 and
Table A4.
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Figure A4. Comparison between fog factors and Gram matrices
for the quality of k-means clustering by normalized mutual infor-
mation and adjusted mutual information.

Comparison 1000 iter 3000 iter 5000 iter

Normalized Mutual Information

Gram matrix 0.6602 0.6602 0.6602
Fog factor 0.8453 0.9313 0.9387

Adjusted Mutual Information

Gram matrix 0.6601 0.6601 0.6601
Fog factor 0.8452 0.9313 0.9387

Adjusted Rand Index

Gram matrix 0.6304 0.6304 0.6304
Fog factor 0.8683 0.9533 0.9596

Table A4. Quantitative results of the quality of k-means clusters
of the Gram matrices and fog factors in normalized mutual infor-
mation, adjusted mutual information, and adjusted Rand index [8].

6. Effect of Fog Style Matching Loss

This section conducts extensive experiments to investi-
gate the effect of the fog style matching loss Lfsm. In
FIFO, the fog style matching loss Lfsm is carried out by
bidirectionally matching each fog condition (i.e., CW, SF,
and RF), so we denote it as a ‘Bidirectional’ setting in this
section. We conduct additional experiments about variants
of the fog style matching loss Lfsm in the ‘Unidirectional’
setting (from Fog to Clear, from Clear to Fog). For ‘Fog



Method
Image Pair FZ FDD FD C-Lindau

CW & SF CW & RF SF & RF mIoU (%) mIoU (%) mIoU (%) mIoU (%)
1 pair
Unidirectional (Fog to Clear) CW← RF 38.5 36.3 45.6 67.1
Unidirectional (Clear to Fog) CW→ RF 36.6 36.9 46.2 64.7
Bidirectional CW↔ RF 37.7 40.3 47.2 66.0
2 pairs
Unidirectional (Fog to Clear) CW← SF SF← RF 43.3 39.2 48.8 68
Unidirectional (Clear to Fog) CW→ SF SF→ RF 43.4 39.3 48.4 63.3
Bidirectional CW↔ SF SF↔ RF 46.0 47.6 50.0 62.3
3 pairs
Unidirectional (Fog to Clear) CW← SF CW← RF SF← RF 44.4 42.6 47.1 68.8
Unidirectional (Clear to Fog) CW→ SF CW→ RF SF→ RF 44.1 36.5 46 64.5
Bidirectional (FIFO) CW↔ SF CW↔ RF SF↔ RF 48.4 48.9 50.7 64.8

Table A5. Analysis on the impact of the fog style matching loss. CW, SF, and RF denote clear weather, synthetic fog, and real fog,
respectively.

to Clear’ settings, fog styles of real foggy images are unidi-
rectionally matched to those of clear weather images, which
is regarded as feature-level dehazing on real foggy images.
This is implemented simply by detaching the gradient flows
from the fog style matching loss Lfsm to clear weather im-
ages. For ‘Clear to Fog’ settings, fog styles of clear weather
images are unidirectionally matched to real foggy images
similar to feature-level fog synthesis on clear weather im-
ages. This is also implemented by detaching the gradient
from the fog style matching loss Lfsm to real foggy im-
ages.

Table A5 summarizes the results. We found that the bidi-
rectional fog style matching outperforms its unidirectional
counterpart when the same domain pairs are involved; this
result justifies the fog style matching loss in FIFO. In ad-
dition, unidirectional (Fog to Clear) models have superior
performance on the clear weather dataset [3] compared to
others due to the effect of focusing on clear weather condi-
tions.

7. Generalization on Deep Features
This section empirically investigates the generalization

of fog-invariant learning of our method on deep features.
It has been reported in domain adaptation and generaliza-
tion literature [1,13] that domain alignment at bottom layers
closes the domain gap of deeper layer features. As shown in
Fig. A5, we empirically verify our case: The average Haus-
dorff distances between ResBlock4 features from different
domains decrease noticeably by FIFO.

8. Comparison with UDA
In this section, we discuss the reason for failure when

UDA methods are applied to the foggy scene segmentation
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Figure A5. Distances between sets of deep features from different
domains before and after training with FIFO.

in Table 1 of the main paper.
Analysis on the failure of FDA. We suspect this is because
the style representation of Fourier domain adaptation (FDA)
is not suitable for handling foggy scenes: FDA considers
the low-frequency spectrum of an image as its style, but in
the case of a foggy image, both its style and content lie in
its low-frequency spectrum. We verify this via qualitative
results of the spectral style transfer, an intermediate step in
FDA. Fig. A6 presents examples of the style transfer from
CW to RF and from RF to CW. The former causes severe ar-
tifacts on RF as the content CW as well as its style is trans-
ferred. On the other hand, the latter applies fog effects to
CW, but the result is not realistic.
Superiority of FIFO over Domain Adversarial Learn-
ing. First, FIFO minimizes the entire objective function as
presented in Section 1 while domain adversarial learning
optimizes the min-max loss. Hence, FIFO does not suffer
from the instability issue of adversarial learning in train-



ing. Second, FIFO can model and exploit within-domain
fog style variations better than the domain adversarial learn-
ing (e.g., DANN). This is crucial since images of the same
fog condition have different fog styles in general. FIFO
achieves this property by the losses in Eq. (1) and Eq. (3)
of the main paper; the former motivated by metric learning
enables the fog-pass filter to learn within-domain fog style
variations, and the latter enables the segmentation model to
keep such variations while closing style gaps only between
different fog domains. Accordingly, thanks to the superior-
ity of FIFO over domain adversarial learning, FIFO clearly
outperforms DANN in Table 1 of the main paper.

CWRF

CW → RF RF → CW
Figure A6. Outputs of spectral style transfer in FDA.

9. Comparison with Variants of CMAda
This section presents the comparison of FIFO to the vari-

ants of CMAda reported in [3], which suggests the current
best performing model, CMAda3+. Table A6 demonstrates
the superiority of FIFO over the variants of CMAda. In Ta-
ble A6, CMAda models denoted ’+’ are conducted the ad-
ditional procedure of fog densification for making the fog
density of real foggy training images similar to target fog
density of the test real foggy images. FIFO outperforms all
variants of CMAda regardless of their number of stages and
densification procedure.

method FZ test v2 FDD FD

CMAda1 [3] 38.9 36.6 46.0
CMAda2 [10] 42.9 37.3 48.5
CMAda3 [3] 43.7 40.6 48.9

CMAda2+ [3] 43.4 40.1 49.9
CMAda3+ [3] 46.8 43.0 49.8

FIFO 48.4 48.9 50.7

Table A6. Comparison of FIFO to variants of CMAda. ’+’ de-
notes models applied the additional procedure of fog densification
for real foggy training datasets. The numbers attached to CMAda
means the number of stages for curriculum learning.

10. Additional Qualitative Results

This section presents additional qualitative results omit-
ted in the main sections due to the space limit. More
segmentation results of FIFO are illustrated in Figure A8.
We compare the results between FIFO, a variant of FIFO,
by directly reducing the gap between Gram matrices and
baseline. Overall, FIFO offers higher quality segmenta-
tion results than the baseline regardless of fog density and
datasets. Specifically, FIFO seems best performing on parts
where dense fog is laid while other models fail, which in-
dicates FIFO working as desired. Figure A9 exihibits ad-
ditional qualitative results on image reconstruction. Like-
wise, the image quality where dense fog is laid is improved,
which implies FIFO extract fog-invariant features. In addi-
tion, clear weather images, as well as foggy images, become
more clear when the features are trained by FIFO.
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