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1. Ablation study
We perform an ablation study to see how each component of HARA contributes to the final accuracy. We compare three

different variations of HARA against the baseline version:
1. HARA without the local refinement (Section 4.4),
2. HARA without the edge filtering (Section 4.3),
3. HARA without the triplet-based propagation (Alg. 2.7–2.25): That is, the initial solution is obtained via a series of

voting + single rotation averaging only.
We use the same datasets as in the main paper (see our main paper for the experimental setup). Fig. 1 and Table 1 present
the results on the synthetic and the real datasets, respectively. These results clearly show that the best performance can be
achieved by utilizing all the components.

2. Informative Q&A from the review-and-rebuttal process
1. What happens to cameras that do not belong to any triplet?

→ It will eventually be estimated via single rotation averaging (line 26 of Alg. 2), so the final number of estimated
rotations is the same.

2. How difficult is it to tune the support threshold (s)?
→ As s is adaptive, only sinit needs to be tuned. Inevitably, there is a trade-off between robustness (large sinit) and
speed (small sinit). For most datasets we tested, the sweet spot was around sinit = 10, and larger values only made a
small difference.

3. How much does [40] affect the accuracy?
→ Since the majority of cameras are added by checking the triplet support than by single rotation averaging [40], it
does not affect the accuracy significantly. Using the single rotation averaging method in [33] would have produced
similar results, but we chose [40] as an additional safety measure against outliers.

4. Why exactly is the proposed method better than [13] in Table 2?
→ The fundamental reason is that, while [13] relies only on the number of inlier matches for initialization, we use both
the number of inlier matches AND the hierarchy of triplet supports. This enables us to initialize our solution with the
most accurate edges first.

5. What are the preprocessing required other than triplet sampling? Is this included in the reported runtime?
→ The reported runtime includes the triplet sampling (described at the end of Section 4.2, corresponding to line 3 of
Alg. 2). No other preprocessing is required.

6. In line 11 of Alg. 1 and line 15 of Alg. 2, what if there are multiple nodes with he same number of non-family neighbors?
→ We simply choose the first one in the list, as it does not really matter.

7. Why set such low thresholds for 2D-2D correspondences?
→ This is because the 1DSfM datasets contain edges with very few (< 5) valid correspondences. We were also
surprised by this fact, and we are suspecting that a mistake had been made in the dataset itself. In any case, you can
think of our low threshold as a safety measure to filter remaining outliers in the edges.

8. What is the typical value for each ϵi?
→ For 1DSfM datasets, on average, ϵ1 ≈ 0.001, ϵ2 ≈ 0.003, ϵ3 ≈ 0.007.

1



n = 100, p = 50%, σ = 5 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

M
ea

n 
er

ro
r 

(d
eg

)

00 0.1 0.2 0.3 0.4 0.5
Outlier ratio

0

n = 100, p = 50%, σ = 10 deg

M
ea

n 
er

ro
r 

(d
eg

)

0

n = 100, p = 20%, σ = 5 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

00

M
ea

n 
er

ro
r 

(d
eg

)

n = 100, p = 20%, σ = 10 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

0

M
ea

n 
er

ro
r 

(d
eg

)

0
1
2
3
4
5
6
7
8
9

10

w/o triplet-based propagationw/o edge filtering
w/o local refinementBaseline

w/o triplet-based propagationw/o edge filtering
w/o local refinementBaseline

0.5

1

1.5

2

2.5

3

1

2

3

4

5

6

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

(a) 100 rotations

n = 200, p = 50%, σ = 5 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

M
ea

n 
er

ro
r 

(d
eg

)

00 0.1 0.2 0.3 0.4 0.5
Outlier ratio

0

n = 200, p = 50%, σ = 10 deg

M
ea

n 
er

ro
r 

(d
eg

)

0

n = 200, p = 20%, σ = 5 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

00

M
ea

n 
er

ro
r 

(d
eg

)

n = 200, p = 20%, σ = 10 deg

0.1 0.2 0.3 0.4 0.5
Outlier ratio

0

M
ea

n 
er

ro
r 

(d
eg

)

0

w/o triplet-based propagationw/o edge filtering
w/o local refinementBaseline

w/o triplet-based propagationw/o edge filtering
w/o local refinementBaseline

0.5

1

1.5

2

2.5

3

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0.5
1

1.5
2

2.5
3

3.5
4

1
2
3
4
5
6
7
8

(b) 200 rotations

Figure 1: Ablation study on the synthetic dataset.

Datasets HARA w/o local refine- w/o edge filter- w/o triplet-based
(baseline) ment (Sect. 4.4) ing (Sect. 4.3) (Alg. 2.7–2.25)

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 627 49.5% 3.5 11.5 41s 4.4 12.6 26s 4.1 12.4 51s 3.9 12.3 30s
ELS 247 66.8% 2.1 7.4 6s 2.6 7.8 5s 2.5 7.7 9s 3.0 11.6 4s
GDM 742 17.5% 43.8 72.5 21s 44.1 72.0 20s 37.7 62.4 33s 46.6 71.7 12s
MDR 394 30.7% 4.8 14.5 14s 6.8 15.2 13s 6.5 16.4 13s 7.7 20.2 5s
MND 474 46.8% 1.1 2.1 28s 1.6 2.8 26s 1.5 7.4 23s 1.4 7.5 11s
ND1 553 68.1% 1.6 6.3 48s 2.3 6.7 38s 3.2 12.4 55s 3.7 15.8 31s
NYC 376 29.3% 2.9 7.7 10s 3.3 8.0 9s 3.0 7.0 8s 3.3 8.6 6s
PDP 354 39.5% 3.4 7.4 7s 3.5 7.5 6s 4.0 8.0 10s 3.6 8.5 5s
PIC 2508 10.2% 4.4 13.1 279s 5.7 13.7 140s 5.5 14.5 437s 5.9 18.4 220s
ROF 1134 10.9% 2.7 8.5 31s 3.3 9.1 26s 3.0 8.6 30s 2.7 7.9 15s
TOL 508 18.5% 4.3 10.0 8s 4.6 10.3 8s 4.0 9.2 14s 4.7 11.6 4s
TFG 5433 4.6% 3.5 10.7 924s 5.5 11.6 325s 3.6 10.0 1049s 3.6 9.7 1014s
USQ 930 5.9% 6.0 12.3 8s 7.1 14.1 7s 7.3 14.7 11s 6.1 11.4 5s
VNC 918 24.6% 6.1 18.1 52s 6.6 18.6 40s 8.0 26.3 56s 8.2 28.3 32s
YKM 458 26.5% 3.0 6.9 17s 3.1 6.5 16s 3.5 8.4 14s 3.6 9.6 5s
ND2 715 25.3% 1.3 5.5 23s 1.7 5.5 19s 1.1 3.5 31s 1.3 5.3 17s
ACP 463 10.7% 1.2 1.7 6s 2.0 2.4 6s 1.2 1.7 4s 1.2 1.7 3s
ARQ 5530 1.5% 3.6 6.8 136s 5.1 8.1 104s 3.7 6.6 169s 4.4 11.2 98s
SNF 7866 0.3% 3.6 4.2 35s 4.8 6.7 32s 3.6 4.2 44s 3.6 4.2 17s

Table 1: Ablation study on the real datasets without the knowledge of the 2D-2D correspondences.

2


