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Overview. This supplementary material includes further in-
formation about the multi-class tiny-object datasets we eval-
uate on in the main paper, including class and patch statis-
tics and images. We also provide additional implementation
details of the approach described in the main paper. Finally,
we share visualizations of annotations acquired from the
user-study, and further discuss annotation quality in terms
of mAP.

In addition to this document, we provide a demo video
of the annotation tool that we implemented for our user
study. This annotation tool is capable of providing real-time
feedback for interactive multi-class tiny-object detection, as
demonstrated in the video.

1. Datasets
Tiny-DOTA We supplement the details regarding the
Tiny-DOTA dataset by providing in Tab. 1, information re-
garding the number of patches and the number of objects
of each object class, for the subsets: train, validation, and
test. The conditions listed at https://captain-whu.
github.io/DOTA/dataset.html stipulate that the
annotations of the DOTA dataset (and in extension, the
Tiny-DOTA dataset) are available for academic purposes
only, with commercial use being prohibited.

LCell The LCell dataset is composed of patches taken
from 688 whole-slide images of breast cancer biopsies1.
The patches were labeled by annotating breast cancer
histopathology images for 8 cell classes. The 8 cell classes
annotated in our LCell include: lymphoplasma (LC), fi-
broblast (Fi), macrophage (Ma), nuclear grade 1 (NG1), nu-
clear grade 2 (NG2), nuclear grade 3 (NG3), necrotic tumor
(NTC), and endothelial cell (EC). These classes are chosen
by expert pathologists according to cells that are common in
breast cancer histology. Tab. 2 states the number of patches,
number of slides2, and the number of cells from each indi-

1Due to the existing agreements regarding the whole-slide image data,
we are unable to open-source this dataset, and it is therefore proprietary.

2We select fixed-size patches from several slides (whole-slide images),
to use in training and validating models for cell detection.

vidual cell class. We visualize some cell images along with
their ground-truth bounding boxes in Fig. 1. Each bound-
ing box represents a cell nucleus and the color denotes the
annotated class of the cell.

Train Val Test
Num. patches 11198 1692 2823
Num. objs in total 431056 72483 99766
Num. Plane 15161 2775 4236
Num. Bridge 3908 671 673
Num. SV 271252 41994 64612
Num. LV 46956 5412 8159
Num. Ship 75835 18155 17723
Num. ST 12954 2534 3145
Num. SP 3996 686 1096
Num. HELO 994 256 122

Table 1. Further statistics on Tiny-DOTA. The abbreviated
classes are: small-vehicle (SV), large-vehicle (LV), storage-tank
(ST), swimming-pool (SP), and helicopter (HELO).

Train Val Test
Num. patches 3423 234 821
Num. slides 419 182 87
Num. cell in total 271434 19184 81745
Num. LC 92973 7630 18708
Num. Fi 43838 3128 11935
Num. Ma 6414 365 1801
Num. NG1 15496 1133 6066
Num. NG2 61024 4008 29525
Num. NG3 17222 867 5436
Num. NTC 17168 1052 4938
Num. EC 17299 1001 3336

Table 2. Further statistics on LCell. The annnotated classes are:
lymphoplasma (LC), fibroblast (Fi), macrophage (Ma), nuclear
grade 1 (NG1), nuclear grade 2 (NG2), nuclear grade 3 (NG3),
necrotic tumor (NTC), and endothelial cell (EC).
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2. Model Implementation Details
Feature Pyramid Network (FPN) Our approach and
baseline models are trained with a ResNet-50 based Fea-
ture Pyramid Network (FPN [2]) as the CNN feature extrac-
tor (backbone) for Faster R-CNN [4] and RetinaNet [3], as
mentioned in the “Experimental Results” section. In a nut-
shell, the FPN is a top-down architecture with lateral con-
nections which uses multi-scale features better in detecting
objects of various scales. For each stage in the ResNet-
based backbone, we forward the outputs through the FPN at
the corresponding feature-map scale. The number of output
channels at each feature-map scale is 256 and the number
of pyramid levels is 5.

Late Fusion (LF). Our CNN-based feature extractor
(backbone) for processing user-input heatmaps is a ResNet-
18. Unlike in the case of the main task network (where
we freeze the ImageNet-pretrained parameters up to the 1st
ResNet stage), we do not freeze any layers of the LF mod-
ule. This is because user input heatmaps are very different
in characteristic and number of channels compared to natu-
ral RGB images. We also apply an FPN to the LF module,
later concatenating features (256 features each) at match-
ing feature-map scales from the main feature extractor. The
512 feature maps (2 × 256 = 512) are passed through a
1× 1 convolution layer to produce 256 channels before us-
ing as an input to the RPN (in the case of Faster R-CNN),
or the classification and box regression subnets (in the case

Figure 1. Example images and annotations of LCell. Each patch
typically contains a large number of objects (cells), which may be
challenging to distinguish. The annotation of such images require
expert pathologists, who can benefit from an interactive annotation
method that aids them in annotating many classes and objects from
a few provided clicks. C3Det promises to be such a method.

of RetinaNet).

Training Configuration for Tiny-DOTA. We train
Faster R-CNN and RetinaNet on Tiny-DOTA for 24 and 36
epochs, respectively. We start from a learning rate of 0.01
(after a 500-step warmup) and scale it by 0.1x at 16 and
22 epochs (for Faster R-CNN), and 24 and 33 epochs (for
RetinaNet), respectively.

Training Configuration for LCell. On LCell, we train
Faster R-CNN for 100 epochs. Training starts from a learn-
ing rate of 0.01 (after a 500-step warmup) and the is scaled
by 0.1x at 30 and 60 epochs.

3. Interactive detection on LCell
The LCell dataset is a particularly challenging dataset to

annotate, requiring expertise and a large number of annota-
tions per patch. An effective interactive annotation method
can easily reduce the necessary mouse clicks per patch from
hundreds (no. of objects times 4) to just a few clicks. We
demonstrate that C3Det can achieve this in Fig. 3.

Fig. 3 illustrates 3 example cases from the LCell dataset,
each with an increasing number of user inputs (described as
clicks). Even with a few given user clicks, object classes
that were not explicitly provided in the user input are de-
tected. With more user inputs (up to 6 or 8), we find that the
ground-truth can almost be reproduced.

Figure 2. User Study Frontend. Our user-study GUI in semi-
automatic annotation mode. Annotator inputs are shown as dots,
while model predicted bounding boxes are drawn as quadrilaterals.



Figure 3. Visualizing Interactive Detection on LCell. Example images of LCell with several prediction results by giving user inputs and
ground-truth. The boxes and dots represents final annotated objects and user inputs from real annotators.
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Figure 4. Performance on Tiny-DOTA. Top: Both Faster R-CNN
and RoI Transformer [1] (solid lines) are improved by adding
C3Det (dashed lines). Bottom: Our method against Faster R-CNN
baselines measured with COCO AP@[.50:.05:.95].

In addition, we find that objects from the same class that
are far away from the click position are detected. As argued
in the main paper, we believe that C3Det considers local
(nearby objects) and global context (far away objects) in
relation to the input image and user inputs well, and address
the multi-class tiny-object detection setting appropriately.

4. Additional Experimental Results
Comparison to another Tiny Object Baseline (RoI
Transformer). Faster R-CNN and RetinaNet are stan-
dard baselines for detecting oriented bounding boxes on
the DOTA dataset and are adopted in many recent papers.
Therefore the results reported in the main paper suggest
that our C3Det can apply to variations of these standard net-
works. Here, we demonstrate that this is indeed the case by
selecting RoI Transformer [1], a recent detection method
designed to perform well on DOTA. Adding C3Det to the
purpose-built RoI Transformer still results in a significant
and consistent increase in performance on Tiny-DOTA (see
Fig. 4, top). This further demonstrates the value of our pro-
posed approach.

Performance on COCO AP metric. An IoU threshold
of 0.5 is the standard procedure for evaluating on the DOTA
dataset and thus we follow it in our experiments. We be-
lieve, however, that it is also meaningful to compute the
COCO AP metric, which takes into account objects of vary-
ing scales and therefore show this in Fig. 4 (bottom). In
comparison to Fig. 5a in main paper, we find that similar
trends can be seen, though the numeric values are decreased
due to the difficulty of the tiny objects task at a high IoU
threshold.

5. User Study

We present a few more results and visualizations from
our User Study. In our user study, we asked participants
to annotate images from the Tiny-DOTA dataset, using a
fully-manual (Manual condition) or semi-automatic (C3Det
+ Manual condition) approach.

At the beginning of each user study session, we asked
for consent from the participant for their participation as
well as the storing of their annotation and mouse clicks. As
no personally identifiable information was collected in our
user study, we do not require approval from an institutional
review board (IRB).

Implementation Details. We describe here the server
specification and library used for implementing and serving
the annotation tool used in our user study.

Our user-study GUI (see Fig. 2) is implemented using
several libraries such as FastAPI 3 for the back-end and
React 4, Redux-Saga 5, and TypeScript 6 for the front-end.
The images (to-be-annotated) are drawn on an HTML5 can-
vas using OpenSeadragon 7 for convenient zooming and
padding. Likewise, user-inputs (points) and annotations
(bounding boxes) are drawn using basic canvas methods.
Model inference via PyTorch takes only a few seconds (on
a Titan X (Pascal) GPU) and we further show this real-time
capability in a supplementary demo video.

Comparison of annotated images on Tiny-DOTA.
Fig. 6 shows example images with ground-truth annotations
as well as annotations acquired by our user study condi-
tions: fully-manual (Manual condition) or semi-automatic
(C3Det + Manual condition). Compared to the ground-
truth, the Manual condition and C3Det + Manual condition
achieve good quality, with small objects being annotated
well. However, there are few difference between them due
to confusing object (in terms of object class), misconcep-
tion of class definition and overly small objects. Fig. 6a and
Fig. 6b are compelling example of frustrating objects (bro-
ken plane and helicopter) and misunderstanding of classes
(small-vehicle confused as large-vehicle). On the other
hand, Fig. 6c has many small-vehicle and ship objects in the
bottom-right and top-left part of the image, respectively. Al-
though the original DOTA dataset does not have annotations
for those very tiny objects (does not exist in the ground-
truth), our annotator labeled these as small-vehicle objects
(C3Det + Manual). In some manner, our semi-automatic
approach may be reducing required effort, and allowing for
more rich annotations to be produced.

3https://fastapi.tiangolo.com/
4https://reactjs.org/
5https://redux-saga.js.org
6https://www.typescriptlang.org
7https://openseadragon.github.io/
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(a) IoU threshold for mAP = 0.1
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(b) IoU threshold for mAP = 0.5

Figure 5. Annotation quality (mAP) versus annotation cost
(time). for different annotation schemes in the user study. Low-
ering the IoU threshold (top) for calculating mAP allows more
loosely drawn bounding boxes to become valid annotations as
well, compared to the results shown in the main paper (bottom).
In fact, the C3Det + Manual condition produces better annotations
overall than the Manual condition. We believe that this may partly
be due to the novice-level expertise of our annotators.

Further Evaluation of Annotation quality (mAP). A
typical assessment of the accuracy of bounding boxes is via
the calculation of the mAP metric, with true-positives being
assessed based on an intersection-over-union (IoU) thresh-
old of 0.5 between a prediction and corresponding ground-
truth box. We therefore evaluated the annotation quality
yielded by the different conditions in our user study using
an IoU threshold of 0.5.

However, our user study participants are novices, and
with the added complexity of drawing (often) very small
bounding boxes using a computer mouse, we find that the
acquired annotations were not always sufficiently covering
the tiny objects (in particular, classes such as small-vehicle
suffered from this issue). We therefore evaluate the mAP
of acquired annotations with an IoU threshold of 0.1 and
report it in Fig. 5 (top).

In line with our observation, we find that the mAP in-
creases for all annotation conditions. In particular, our
C3Det + Manual is able to yield better annotations over-
all than the Manual or C3Det Only conditions. This eludes
to two possibilities: (a) C3Det can guide novice annotators
to produce better quality annotations, and (b) allowing man-

ual edits on top of C3Det outputs allows for an even higher
final annotation quality.

References
[1] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu.

Learning RoI Transformer for Detecting Oriented Objects in
Aerial Images. In CVPR, 2019. 4

[2] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In CVPR, pages 2117–2125, 2017.
2

[3] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 2

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: towards real-time object detection with region
proposal networks. TPAMI, 39(6):1137–1149, 2016. 2



(a) In some cases, the ground-truth (GT) omitted some objects, which our user study conditions captured.

(b) Our novice annotators can make critical mistakes (mislabeling large-vehicle objects as small-vehicle), which can be corrected by C3Det.

(c) C3Det can allow for better completion in the case where annotators are unsure about certain objects, or do not sufficiently zoom in to annotate very tiny objects.

Figure 6. Samples from the User Study. Example images of Tiny-DOTA with ground-truth, manual, and C3Det + manual with annota-
tions. The boxes and dots represents final annotated objects and user inputs from real annotators. To visualize the user inputs, we draw
larger dots compared to the actual User Study GUI.


