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In this document, we provide more comprehensive re-
sults not provided in the original manuscript due to the page
limit as below. The code to reproduce our results will be
publicly available soon.

• Comparisons of computational cost with state-of-the-
art image restoration methods (Section 1)

• Ablation study on pre-training the network (Section 2)

• More detailed architecture of the KiT (Section 3)

• More qualitative evaluation results for image restora-
tion tasks with state-of-the-arts methods (Section 4)

• Performance evaluation for image deblurring with
JPEG artifacts on REDS dataset (Section 5)

1. Computational cost
We first provide the performance comparison with state-

of-the-art image restoration methods with respect to the ac-
curacy and computational cost. Fig. 1 shows the graphs il-
lustrating both the performance and computational cost of
state-of-the-art methods. The proposed method is marked
with a star symbol with red color, and other methods are
marked with a circle symbol with green color. The x-axis
and y-axis of the graphs represent the computational cost
measured with Multiply-Accumulates (MACs) and the per-
formance with the PSNR, respectively. The MACs of all
graphs are measured when an input resolution is 256 ×
256. In the image denoising on the SIDD dataset [1], the
proposed method has comparable computational cost with
Uformer [14] and NBNet [5], while achieving the best per-
formance. In the image deraining and deblurring, the KiT
shows a slightly better performance yet with much less
computational cost. Compared to the MPRNet [16], the
KIT has almost 92.7% fewer MACs.

2. Pre-training
Although the proposed method achieves state-of-the-art

performance in various restoration tasks, it is well-known

(a) Denoising

(b) Deblurring
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Figure 1. Performance vs. computational cost of state-of-the-art
methods for the image restoration tasks.
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Method SIDD
PSNR SSIM

KiT 39.80 0.972
KiT† 39.85 0.974

Table 1. Effectiveness of the pre-training strategy

that the transformer architectures with pre-trained mod-
els using large-scale dataset have greater potential than
those learned from scratch [7]. However, as relatively
small datasets were available in low-level tasks, pre-training
strategies mostly have been addressed in high-level tasks.
IPT [3] first investigated that this strategy is also benefi-
cial for low-level image processing by leveraging ImageNet
dataset as the baseline dataset for pre-training their model.
Following this approach, we trained the network using Ima-
geNet dataset with synthetic Gaussian noise and fine-tuned
on SIDD [1] dataset for image denoising. Tab. 1 shows
the effectiveness of the pre-training approach. ‘†’ means
the model fine-tuned on small target dataset (SIDD) after
trained with large-scale dataset (ImageNet). By pre-training
the network, the results were further improved by 0.05 dB
in terms of PSNR.

3. Detailed architecture
We provide the detailed architecture of the proposed KiT

in Tab. 2. We omit an explanation of the decoder as it is
the mirrored architecture of the encoder. As described in
the original manuscript, each stage consists of the patch
partition, k-NN transformer blocks (KTB) and an inter-
polation layer. The input feature maps are first splitted
into non-overlapping N patches with the size of r2, where
N = HW/r2. The chunk size k (equal to the number of
NN patches) and patch size r were set to 4 in all stages
of the encoder and decoder. In the bottleneck stage, k is
set to 1 since there are only a few patches (N/64). As the
stage progresses, the input feature resolution gradually de-
creases double in the encoder, and increases double in the
decoder. The channel size of the input feature maps in-
creases/decreases in contrast to resolution. The KTB con-
sists of a sequence of layer normalization (LN), k-NN local
attention (KLA), LN and feed-forward network (FFN). As
the interpolation layer (downsample/upsample) is 2D spa-
tial operation, the input feature map, size of (# of patches)
× (patch size) × (channel size), is reshaped to (height) ×
(width) × (channel size) at the end of the KTB.

4. Qualitative results
In this section, we conducted more visual comparisons

with the state-of-the-art methods not provided in the orig-
inal manuscript due to the page limit. The qualitative re-
sults of the image denoising, image deblurring, and im-

Encoder
Stage Layer Input Shape Notes

- Conv × 3 H ×W × 3 -

1

Patch Partition H ×W × C r = 4

KTB=


LN

KLA
LN

FFN

 N × r2 × C k = 4, b = 2

Downsample H ×W × C -

2

Patch Partition H
2 ×

W
2 × 2C r = 4

KTB=


LN

KLA
LN

FFN

 N
4 × r2 × 2C k = 4, b = 2

Downsample H
2 ×

W
2 × 2C -

3

Patch Partition H
4 ×

W
4 × 4C r = 4

KTB=


LN

KLA
LN

FFN

 N
16 × r2 × 4C k = 4, b = 2

Downsample H
4 ×

W
4 × 4C -

Bottleneck
Stage Layer Input Shape Notes

-

Patch Partition H
8 ×

W
8 × 8C r = 4

KTB=


LN

KLA
LN

FFN

 N
64 × r2 × 8C k = 1, b = 2

Table 2. Detailed architecture of the KiT. k-NN transformer block
(KTB) consists of layer noramlization (LN), k-NN local attention
(KLA) and feed-forward network (FFN).

age deraining are shown in the Fig. 2, Fig. 3, and Fig. 4,
respectively. Similar to the visual results of the original
manuscripts, our method successfully restores degraded im-
ages with fine structures thanks to the capability of captur-
ing locality with non-local connectivity.

5. Deblurring with JPEG artifacts
To verify the effectiveness of the proposed method, we

further evaluated it with the image deblurring task on the
REDS [11] dataset with JPEG artifacts. Namely, we restore
an input image by removing both blur and compression ar-
tifacts. The REDS dataset contains 300 video sequences,
where each sequence consists of 100 images with JPEG and
blurry artifacts. For training, 24,000 images obtained with
random cropping of 128 × 128 in the REDS dataset were
used. Since a quantitative comparison was available only
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Figure 2. Visual results of image denoising: (a) RIDNet [2], (b) CycleISP [15], (c) MPRNet [16], (d) Uformer [14], (e) KiT, and (f) ground
truth.

Rainy input (a) (b) (c) (d)

Figure 3. Visual results of image deblurring: (a) MPRNet [16], (b) MIMO-UNet+ [6], (c) KiT, and (d) ground truth.

with the REDS test data (which contains no ground truth)
during the NTIRE 2021 challenge [12], we provided the
qualitative evaluation results of the REDS validation data
in Fig. 5. In the images on the upper row, the numbers of li-
cense plate in our result are more visible than others. In the
case of the bottom row, the texture of rock is restored more
vividly and accurately. Note that, the number of parame-
ters of the KiT (20.6M), is remarkably smaller than those
of WRCAN [9] (156.97M) and HINet [4] (88.91M). In ad-
dition, our network needs much lower MACs (43.08G) than
WRCAN (704.01G) and HINet (170.73G).
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Figure 4. Visual results of image deraining: (a) DerainNet [8], (b) PreNet [13], (c) RESCAN [10], (d) MPRNet [16], (e) KiT, and (f)
ground truth.
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Figure 5. Visual comparisons on the REDS [11] dataset: (a) cropped image, (b) WRCAN [9], (c) HINet, (d) KiT, and (e) ground truth.
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