
A. Appendix

In this appendix, Section A.1 first describe the train-
ing details of our experiments for ImageNet classification,
COCO detection/instance segmentation, and ADE20K se-
mantic segmentation. Second, in Section A.2, we show fur-
ther experimental analyses for ImageNet classification and
COCO object detection. Finally, in Section A.3, we provide
more qualitative analysis on the learned attention maps and
failure cases.

A.1. Detailed Experimental Settings

ImageNet classification. Following the training recipe as
in CoaT [65] and DeiT [14], we perform the same data
augmentations such as MixUP [28], CutMix [70], ran-
dom erasing [72], repeated augmentation [24], and label
smoothing [48]. We train MPViTs for 300 epochs with the
AdamW [38] optimizer, a batch size of 1024, weight decay
of 0.05, five warm-up epochs, and an initial learning rate
of 0.001, which is scaled by a cosine decay learning rate
scheduler. We implement MPViTs based on CoaT official
code 1 and timm library [59].

Object detection and Instance segmentation. For fair
comparison, we follow the training recipe as in CoaT [65]
and Swin Transformer [37] for RetinaNet [35] and Mask R-
CNN [22]. Specifically, we train all models for 3⇥ sched-
ule (36 epochs) [22,61] with multi-scale inputs (MS) [5,45]
which resizes the input such that the shorter side is between
480 and 800 while the longer side is at most 1333). We use
the AdamW [38] optimizer, a weight decay of 0.05, a batch
size of 16, and an initial learning rate of 0.0001 which is de-
cayed by 10⇥ at epochs 27 and 33. We set stochastic depth
drop rates [27] to 0.1, 0.1, 0.2, and 0.4 for Tiny, XSmall,
Small, and Base, respectively. We implement all models
based on the detectron2 library [61].

Semantic segmentation. Following the same training
recipe as in Swin Transformer [37] and XCiT [17], we
deploy UperNet [62] with the AdamW [38] optimizer, a
weight decay of 0.01, an initial learning rate of 6 ⇥ 10�5

which is scaled using a linear learning rate decay, and linear
warmup of 1,500 iterations. We train models for 160K itera-
tions with a batch size of 16 and an input size of 512⇥ 512.
We use the same data augmentations as [11, 37], utilizing
random horizontal flipping, a random re-scaling ratio in the
range [0,5, 2.0] and random photometric distortions. We set
stochastic depth drop rates [27] to 0.2 and 0.4 for Small and
Base, respectively. We implement all models based on the
mmseg library [11].

1https://github.com/mlpc-ucsd/CoaT

Model Param.(M) GFLOPs Top-1 Reference
DeiT-T [50] 5.7 1.3 72.2 ICML21
TnT-Ti [21] 6.1 1.4 73.9 NeurIPS21
ViL-Ti-RPB [71] 6.7 1.3 76.7 ICCV21
XCiT-T12/16 [17] 7.0 1.2 77.1 NeurIPS21
ViTAE-6M [66] 6.5 2.0 77.9 NeurIPS21
CoaT-Lite T [65] 5.7 1.6 76.6 ICCV21
MPViT-T 5.8 1.6 78.2 (+1.6)

ResNet-18 [23] 11.7 1.8 69.8 CVPR16
PVT-T [58] 13.2 1.9 75.1 ICCV21
XCiT-T24/16 [17] 12.0 2.3 79.4 NeurIPS21
CoaT Mi [65] 10.0 6.8 80.8 ICCV21
CoaT-Lite Mi [65] 11.0 2.0 78.9 ICCV21
MPViT-XS 10.5 2.9 80.9 (+2.0)

ResNet-50 [23] 25.6 4.1 76.1 CVPR16
PVT-S [58] 24.5 3.8 79.8 ICCV21
DeiT-S/16 [50] 22.1 4.6 79.9 ICML21
Swin-T [37] 29.0 4.5 81.3 ICCV21
Twins-SVT-S [10] 24.0 2.8 81.3 NeurIPS21
TnT-S [21] 23.8 5.2 81.5 NeurIPS21
CvT-13 [60] 20.0 4.5 81.6 ICCV21
XCiT-S12/16 [17] 26.0 4.8 82.0 NeurIPS21
ViTAE-S [66] 23.6 5.6 82.0 NeurIPS21
GG-T [68] 28.0 4.5 82.0 NeurIPS21
CoaT S [65] 22.0 12.6 82.1 ICCV21
Focal-T [67] 29.1 4.9 82.2 NeurIPS21
CrossViT-15 [6] 28.2 6.1 82.3 ICCV21
ViL-S-RPB [71] 24.6 4.9 82.4 ICCV21
CvT-21 [60] 32.0 7.1 82.5 ICCV21
CrossViT-18 [6] 43.3 9.5 82.8 ICCV21
HRFormer-B [69] 50.3 13.7 82.8 NeurIPS21
CoaT-Lite S [65] 20.0 4.0 81.9 ICCV21
MPViT-S 22.8 4.7 83.0 (+1.1)

ResNeXt-101 [64] 83.5 15.6 79.6 CVPR17
PVT-L [58] 61.4 9.8 81.7 ICCV21
DeiT-B/16 [50] 86.6 17.6 81.8 ICML21
XCiT-M24/16 [17] 84.0 16.2 82.7 NeurIPS21
Twins-SVT-B [10] 56.0 8.3 83.1 NeurIPS21
Swin-S [37] 49.6 8.7 83.1 ICCV21
Twins-SVT-L [10] 99.2 14.8 83.3 NeurIPS21
Swin-B [37] 88.0 15.4 83.3 ICCV21
XCiT-S12/8 [17] 26.0 18.9 83.4 NeurIPS21
Focal-S [67] 51.1 9.1 83.5 NeurIPS21
XCiT-M24/8 [17] 84.0 63.9 83.7 NeurIPS21
Focal-B [67] 89.8 16.0 83.8 NeurIPS21
XCiT-S24/8 [17] 48.0 36.0 83.9 NeurIPS21
MPViT-B 74.8 16.4 84.3

Table 8. Full comparison on ImageNet-1K classification. These
models are trained with 224⇥224 resolution. For fair comparison,
we do not include models that are distilled [50] or use 384 ⇥ 384
resolution. Note that CoaT-Lite [65] models are our single-path
baselines.

A.2. More Experimental Analysis

ImageNet classification. We provide a full summary
of comparisons on ImageNet-1K classification in Table 8
by adding more recent Vision Transformers including
ViL [71], TnT [21], ViTAE [66], HRFormer [69], and
Twins [10]. We can observe that MPViTs consistently
achieve state-the-art performance compared to SOTA mod-
els with similar model capacity. Notably, the smaller
MPViT variants often outperform their larger baseline
counterparts even when the baselines use significantly more

https://github.com/mlpc-ucsd/CoaT


Figure 5. Performance comparisons with respect to FLOPs and model parameters on ImageNet-1K classification. These models are
trained with 224⇥ 224 single-crop. For fair comparison, we do not include models that are distilled [50] or use 384⇥ 384 resolution.

parameters, as shown in Table 8 and Fig. 5 (right). Further-
more, Fig. 5 demonstrates that MPViT is a more efficient
and effective Vision Transformer architecture in terms of
computation and model parameters.

Deformable-DETR. Additionally, we compare our
MPViT-Small with baselines, CoaT-Lite Small [65] and
CoaT Small [65], on the Deformable DETR (DD) [74].
For fair comparison, we train MPViT for 50 epochs with
the same training recipe2 as in CoaT [65]. We use the
AdamW [38] optimizer with a batch size of 16, a weight
decay of 10�4, and an initial learning rate of 2 ⇥ 10�4,
which is decayed by a factor of 10 at 40 epoch. Tab. 9
shows results comparing with CoaT-Lite Small and CoaT
Small. MPViT-Small improves over both CoaT-Lite Small
and CoaT Small. Notably, MPViT achieves a larger gain in
small object AP (1.5% APS) as compared to others (i.e.,
APM or APL).

COCO with 1⇥ schedule.. In addition to the 3⇥ sched-
ule + multi-scale (MS) setting, we also evaluate MPViT
on RetinaNet [35] and Mask R-CNN [22] with 1⇥ sched-
ule (12 epochs) [61] using single-scale inputs. Tab. 10
shows result comparisons with state-of-the-art methods. In
the results of 3⇥ schedule + multi-scale (MS), we can also
observe that MPViTs consistently outperform on both Reti-
naNet and Mask R-CNN. We note that MPViTs surpass the
most recent improved PVTv2 [57] models.

A.3. More Qualitative Results

Visualization of Attention Maps. As shown in Eq.(4), the
factorized self-attention in [65] first extracts channel-wise
attention softmax(K) by applying a softmax over spatial

2https://github.com/mlpc-ucsd/CoaT/tree/main/
tasks/Deformable-DETR

Backbone AP AP50 AP75 APS APM APL

ResNet-50 [23] 44.5 63.7 48.7 26.8 47.6 59.6
CoaT-Lite small [65] 47.0 66.5 51.2 28.8 50.3 63.3
CoaT Small [65] 48.4 68.5 52.4 30.2 51.8 63.8
MPViT-Small 49.0 68.7 53.7 31.7 52.4 64.5

Table 9. COCO Object Detection results on Deformable

DETR [74]. These all models are trained using the same code-
base.

dimensions (x, y). Then, softmax(K)TV is computed as
below:

(softmax(K)TV )(ci, cj)

=
X

(x,y)

softmax(K)(x, y, ci)V (x, y, cj), (5)

where x and y are position of tokens. ci and cj indicate
channel indices of K and V , respectively. It can be inter-
preted as multiplying V by the channel-wise spatial atten-
tion in a pixel-wise manner followed by the sum over spatial
dimension. In other words, softmax(K)TV represents the
weighted sum of V where the weight of each position (x, y)
is the channel-wise spatial attention. Therefore, to obtain
the importance of each position, we employ the mean of
softmax(K) over the channel dimension, resulting in spa-
tial attention. Then, the spatial attention is overlaid to the
original input image for better visualization, as shown in
Fig. 6. In detail, we resize the spatial attention to the size
of the original image, normalize the value to [0,1], and then
multiply the attention map by the image.

To validate the effectiveness of our attention map qual-
itatively, we compare attention maps of MPViT and CoaT-
Lite [65] in Fig. 6. We compare the attention maps of each
method generated from the 4th stage in the same way. For a
fair comparison, we pick the best qualitative attention map
of each method since both CoaT-Lite and MPViT have eight
heads for each layer. Furthermore, we visualize attention

https://github.com/mlpc-ucsd/CoaT/tree/main/tasks/Deformable-DETR
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Backbone Params. (M) GFLOPs
Mask R-CNN 1⇥ RetinaNet 1⇥
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PVTv2-B0 [57] 23 (13) 195 (177) 38.2 60.5 40.7 36.2 57.8 38.6 37.2 57.2 39.5 23.1 40.4 49.7
MPViT-T 28 (17) 216 (196) 42.2 64.2 45.8 39.0 61.4 41.8 41.8 62.7 44.6 27.2 45.1 54.2
PVT-T [58] 33 (23) 240 (221) 39.8 62.2 43.0 37.4 59.3 39.9 39.4 59.8 42.0 25.5 42.0 52.1
PVTv2-B1 [57] 33 (23) 243 (225) 41.8 54.3 45.9 38.8 61.2 41.6 41.2 61.9 43.9 25.4 44.5 54.3
MPViT-XS 30 (20) 231 (211) 44.2 66.7 48.4 40.4 63.4 43.4 43.8 65.0 47.1 28.1 47.6 56.5
ResNet-50 [23] 44 (38) 260 (239) 38.0 58.6 41.4 34.4 55.1 36.7 36.3 55.3 38.6 19.3 40.4 48.8
PVT-S [58] 44 (34) 305 (226) 43.0 65.3 46.9 39.9 62.5 42.8 42.2 62.7 45.0 26.2 45.2 57.2
PVTv2-B2 [57] 45 (35) 309 (290) 45.3 67.1 49.6 41.2 64.2 44.4 44.6 65.6 47.6 27.4 48.8 58.6
Swin-T [37] 48 (39) 267 (245) 43.7 66.6 47.7 39.8 63.3 42.7 42.0 63.0 44.7 26.6 45.8 55.7
Focal-T [67] 49 (39) 291 (265) 44.8 67.7 49.2 41.0 64.7 44.2 43.7 65.2 46.7 28.6 47.4 56.9
MPViT-S 43 (32) 268 (248) 46.4 68.6 51.2 42.4 65.6 45.7 45.7 57.3 48.8 28.7 49.7 59.2
ResNeXt101-64x4d [64] 102 (96) 493 (473) 42.8 63.8 47.3 38.4 60.6 41.3 41.0 60.9 44.0 23.9 45.2 54.0
PVT-M [58] 64 (54) 392 (283) 42.0 64.4 45.6 39.0 61.6 42.1 41.9 63.1 44.3 25.0 44.9 57.6
PVT-L [58] 81 (71) 494 (345) 42.9 65.0 46.6 39.5 61.9 42.5 42.6 63.7 45.4 25.8 46.0 58.4
PVTv2-B5 [57] 101 (91) 557 (538) 47.4 68.6 51.9 42.5 65.7 46.0 46.2 67.1 49.5 28.5 50.0 62.5
Swin-S [37] 69 (60) 359 (335) 46.5 68.7 51.3 42.1 65.8 45.2 45.0 66.2 48.3 27.9 48.8 59.5
Swin-B [37] 107 (98) 496 (477) 46.9 69.2 51.6 42.3 66.0 45.5 45.0 66.4 48.3 28.4 49.1 60.6
Focal-S [67] 71 (62) 401 (367) 47.4 69.8 51.9 42.8 66.6 46.1 45.6 67.0 48.7 29.5 49.5 60.3
Focal-B [67] 110 (101) 533 (514) 47.8 70.2 52.5 43.2 67.3 46.5 46.3 68.0 49.8 31.7 50.4 60.8
MPViT-B 95 (85) 503 (482) 48.2 70.0 52.9 43.5 67.1 46.8 47.0 68.4 50.8 29.4 51.3 61.5

Table 10. COCO detection and instance segmentation with RetinaNet [35] and Mask R-CNN [22]. Models are trained for 1⇥ sched-
ule [61] with single-scale training inputs. All backbones are pretrained on ImageNet-1K. We omit models pretrained on larger-datasets (e.g.,
ImageNet-21K). The GFLOPs are measured at resolution 800 ⇥ 1280. Mask R-CNN’s parameters/FLOPs are followed by RetinaNet in
parentheses.

maps extracted from all three paths of MPViT to observe
the individual effects of each path.

As mentioned in Section 5, the three paths of MPViT
can capture objects of varying sizes due to the multi-scale
embedding of MPViT as the similar effect of multiple re-
ceptive fields. In other words, path-1 concentrates on small
objects or textures while path-3 focuses on large objects or
high-level semantic concepts. We support this intuition by
observing more examples shown in Fig. 6. Attention maps
of path-1 (3rd column) capture small objects such as small
ducks (4th row), an orange (5th row), a small ball (6th row),
and an antelope (8th row). In addition, since path-1 also
captures textures due to a smaller receptive field, a rela-
tively low level of attention is present in the background.
In contrast, we can observe different behavior for path-3,
which can be seen in the rightmost column. Path-3 accen-
tuates large objects while suppressing the background and
smaller objects. For example, the ducks (4th row), orange
(5th row), and ball (8th row) are masked out in the rightmost
column since path-3 concentrates on larger objects. The at-
tention maps of path-2 (4th column) showcase the changing
behavior between paths-1 and 3 since the scale of path-2
is in-between the scales of paths-1 and 3, and accordingly,
the attention maps also begin to transition from smaller to
larger objects. In other words, although the attention map
of path-2 attends similar regions as path-1, it is also more
likely to emphasize larger objects, as path-3 does. For ex-
ample, in the last row, path-2 attends to similar regions as
path-1 while emphasizing the large giraffes more than path-
1. Therefore, although the three paths independently deal

with different scales, they act in a complementary manner,
which is beneficial for dense prediction tasks.

Since Coat-Lite has a single-path architecture, the singu-
lar path needs to deal with objects of varying sizes. There-
fore, attention maps from CoaT-Lite (2nd column) simulta-
neously attend to large and small objects, as shown in the
4th row. However, it is difficult to capture all objects with
a single path, as CoaT-Lite misses the orange (5th row) and
ball (7th row). In addition, Coat-Lite cannot capture object
boundaries as precisely as path-3 of MPViT since path-3
need not attend to small objects or textures. As a result,
MPViT shows superior results compared to Coat-Lite on
classification, detection, and segmentation tasks.

Failure case. In order to verify the effects of attention from
a different perspective, we further analyze failure cases on
the ImageNet validation images. We show attention maps
of each path corresponding to the input image along with
the ground truth and the predicted labels of MPViT in Fig. 7.
For example, in the first row, the ground truth of the in-
put image is a forklift, while the predicted label is a trailer
truck. Although the attention map from path-1 places light
emphasis on the forklift, the attention maps from all paths
commonly accentuate the trailer truck rather than the fork-
lift, which leads to classifying the image as a trailer truck
and not a forklift. Other classification results in Fig. 7 fail
in similar circumstances, except for the last row. In the last
row, MPViTs attention maps correctly capture the beer bot-
tle. However, the attention maps also attend to the face near
the bottle. Therefore, the bottle is misunderstood as a mi-
crophone since the image of “drinking a bottle of beer” and



Input CoaT-Lite Path-1 (૜ × ૜) Path-2 (૞ × ૞) Path-3 (ૠ × ૠ)
MPViT

Figure 6. Additional Attention Maps generated by CoaT-Lite [65] and our MPViT. MPViT has a triple-path structure with patches of
various sizes (e.g., 3⇥ 3, 5⇥ 5, 7⇥ 7), leading to fine and coarse features.
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Figure 7. Attention Maps of failure cases on ImageNet validation images. The input image and corresponding attention maps from each
path are illustrated. In the rightmost column, we show the ground truth labels and predicted labels colored with red and blue, respectively.



“using a microphone” are semantically similar. From the
above, we can observe that the attention maps and the pre-
dicted results are highly correlated.
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