Supplementary Materials for
MUSE-VAE

In this supplement, we provide additional details about
the proposed MUSE-VAE, as well as the experimental eval-
uations, beyond those in the Main paper. Appendix A offers
dataset specifications for SDD, nuScenes, and PFSD, with
scene examples of each dataset. Appendix B elaborates on
the implementation details, including the model networks
and the approach we used to create the local view of the
semantic map. In Appendix C, we define the evaluation
metrics used in the Main paper. Appendix D presents de-
tails of two statistical significance tests, the Friedman test
used in the Main paper, and the Bayesian Signed Rank test,
whose results are shown here. Both tests offer additional ev-
idence in support of improvements that MUSE-VAE frame-
work makes beyond the baseline models. Appendix E sup-
plement the qualitative analyses in the Main paper, show-
casing instances of scenarios and the predictions made by
all models in those scenarios, to highlight the different ef-
fects those models have on the forecasting process. Ap-
pendix F shows the limitation of the SDD segmentation pro-
vided by Y-net [29] to explain the low ECFL discussed in
Sec. 4.2 of the Main paper. Finally, in Appendix G, we dis-
cuss some key challenges of the trajectory prediction model
and suggest possible directions for future research.

A. Datasets
A.1. Real World Datasets

The Stanford Drone Dataset (SDD) [34] consists of 20
unique scenes of college campus from bird-eye view col-
lected by drones. It contains various agents such as pedes-
trians, cyclists, skateboarder, cart, car, and bus. We use
the same split following the TrajNet challenge [36]. As in
[29,37], we sample at 2.5 Hz, which yields 3.2s (8 frames)
observed trajectories and 4.8s (12 frames) future trajecto-
ries. We take advantage of the semantic map as well as the
pixel data processed by [29]. The semantic segmentation
map is labeled as 5 classes; pavement, road, structure, ter-
rain, and tree where each class has the class ID 1, 2, 3, 4,
and 5, respectively. A sample scene image and its semantic
map from SDD is shown in Fig. A.la.

The nuScenes Dataset [0] is a public autonomous driv-
ing dataset. It provides 1,000 scenes in Boston, USA and
Singapore and the corresponding HD semantic map with 11
annotated classes. Each scene is annotated at every 0.5s (2
Hz). Following the nuScenes prediction challenge setup,
we split the train/val/test set, and predict only the vehicle
category for 6s (12 frames) future trajectories based on 2s
(4 frames) observations as in [28,31,50]. Fig. A.1b shows
the global view of the binary map of the scene in Singapore
with drivable (white-colored) area and undrivable (black-

colored) area that nuScenes dataset provides.

A.2. Synthetic Dataset

The Path Finding Simulation Dataset (PFSD) was
generated by simulating the navigation of agents within
100 large synthetic environments borrowed from [43].
These environments were designed according to the exter-
nal shapes and interior organizations of rooms and corridors
generally found in contemporary architecture [10]. Unlike
SDD and nuScenes, the non-navigable spaces in these en-
vironments are significantly more complex for navigation.
Each of the environments was used to simulate 500 scenes
(amounting to 50,000 total scenes), where a single agent
navigates between two random points within the environ-
ment using the prevalent Social Force model [16]. As with
SDD, the scenes were sampled at 2.5 Hz and further divided
into training/val/test cases with 3.2s (8 frames) of observed
trajectories and 4.8s (12 frames) of future trajectories. We
use subset of the PFSD and make the train/val/test set with
40/2/4 different synthetic environments, respectively. We
provide an environment example in Fig. A.lc. It is the bi-
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Figure A.1. (a) The global view of the scene image (left) and the
semantic map (right). The global view of the semantic map of (b)
nuScenes, (c) PFSD.



nary map consisting of navigable (white-colored) and non-
navigable (black-colored) space of the entire environment
of one scenario. An agent finds a path by moving from a
room to another room using the exit between obstacles.

B. Implementation Details
B.1. Local Semantic Map

Stanford Drone Dataset (SDD)

We divide the semantic map class values (1 through 5) from
Y-net [29] with 5 so that the class values become 0.2 (pave-
ment), 0.4 (road), 0.6 (structure), 0.8 (terrain), 1 (tree). We
center the local view of the semantic map at the last ob-
served step. As real-world agents have varying lengths of
trajectories, for the radius of the local map we compute the
per-step traversed distance of all trajectories, in each se-
quence (20 frames), and set the radius to be 20 times larger
than the per-step distance. Because the local semantic map
is centered at the last observed position, it is possible that
the local map region exceeds the original map. We repre-
sent those areas not in the original map as ‘non-navigable’
space. We assume ‘structure’ is the most non-navigable
space among the five aforementioned classes, thus pad those
areas with ‘structure’ class value. Each of the local map im-
ages and the Gaussian heatmaps for trajectories is resized
into 256x256 pixels, then concatenated in the channel di-
mension.

nuScenes Dataset

We use the official code of AgentFormer [50] to preprocess
the nuScenes semantic map. This results in a 3 channel se-
mantic map with four categories: drivable area, lane, road
segmentation, and undrivable area. We further preprocess
this information to create a single-channel semantic map by
setting the drivable area, lane, road segmentation, and un-
drivable area as 0, 0.3, 0.6, and 1, respectively. To deter-
mine a local map size, we use the same policy as in SDD.
For the local map region out of the original map, we pad it
with the ‘undrivable area’ class value.

Path Finding Simulation Dataset (PFSD)

Since the synthetic dataset has consistent step size through-
out the data, we compute the average per-step distance
across the entire training set, about 8-pixel distance. Based
on this, the local view of the semantic map is centered at the
last observed position of the agent and its size is 160 x 160.
We encode the navigable / non-navigable space as the val-
ues 0/ 1, respectively. The areas of the local map that devi-
ate from the original map are padded by value 1 to indicate
non-navigable space.

B.2. Networks

We implement MUSE-VAE in PyTorch. All networks are
trained with Adam optimizer [20]. LG-CVAE has the back-
bone of U-net [35] combined with CVAE. U-net encoder

blocks consist of [32, 32, 64, 64, 64] output channel dimen-
sions with the input channel 2 consisting of a local map and
a heatmap for past trajectories. The decoder blocks have
[64, 64, 64, 32, 32] output channel dimensions with the fi-
nal output channel 1 to predict the long-term goal heatmap.
The posterior network consists of convolutional layers with
same output channels as the U-net encoder blocks. The
prior network takes the feature from the U-net encoder and
process it further using two convolutional layers with out-
put channel dimension [32, 32]. Following [22], the result-
ing 2D feature map is average-pooled into 1x1, then fed to
a 1x1 convolutional layer to estimate the mean and the stan-
dard deviation of the posterior and the prior latent distribu-
tion, with the dimension set to 10. To avoid the posterior
collapse, the encoder of LG-CVAE is pretrained with the
AE loss for 10 epochs with the learning rate of 1e~3. Dur-
ing training of LG-CVAE with VAE loss, we anneal the KL
loss for the first 10 epochs; FB is set as 0.7, 6, and 3 for
PFSD, SDD, and nuScenes, respectively. The learning rate
is 1e73,1e~*, and 1e~* for PFSD, SDD, and nuScenes, re-
spectively.

SG-net is also based on the U-net. It has one additional
block of 128 output channel dimensions more than LG-
CVAE. The input channel of the encoder is 3, for a local
map, a heatmap for past trajectories, and a heatmap for a
long-term goal. The final output channel of the decoder
is Ngg + 1 for Ngg heatmaps of Ngg short-term goals
and a heatmap of a long-term goal. The learning rate is
le~3, 16*4, and 1e~3 for PFSD, SDD, and nuScenes, re-
spectively.

In Micro-net, we utilize the position, velocity, and accel-
eration of the past sequence as in [38]. The prior network
consists of an LSTM with 64 hidden dimensions and 2 FC
layers with the output dimensions [256, 40] to estimate the
mean (20D) and the standard deviation (20D) of the prior la-
tent distribution. The 256 dimensional hidden feature from
the prior network is processed once more by concatenating
it with the feature from the LG-CVAE, which encodes the
semantic map using FC layer with 32 output dimensions in
order to give the map information to the decoder. The pos-
terior network consists of a bi-directional LSTM with 64
hidden dimensions, followed by two FC layers with [256,
40] to estimate the mean (20D) and the standard deviation
(20D) of the posterior latent distribution. The decoder has
a GRU with 128 hidden dimensions, followed by FC layers
to predict the mean and standard deviation of the 2D posi-
tion distribution. The short-term goal heatmap predictions
from Macro-stage are converted to the 2D position and en-
coded by bi-directional LSTM with 64 hidden dimensions
and further processed into a 2D feature by FC layer and fed
to the GRU. We use the learning rate 1e = and 3 = 50 for
all datasets. FB is 0.07 for PFSD and nuScenes, and 1 for
SDD.



A subset of our code for PFSD is provided as additional
supplementary material. The complete code for MUSE-VAE
will be released upon acceptance, following the conference
policy.

C. Evaluation metrics

To evaluate the performance, we use four metrics: Aver-
age Displacement Error (ADE), Final Displacement Error
(FDE), Kernel Density Estimate-based Negative Log Like-
lihood (KDE NLL), and Environment Collision-Free Like-
lihood (ECFL).

Average Displacement Error (ADE) Given t; future
timestamps, ADE is defined as the L, distance between the
future GT and predictions which is averaged over t;. Fol-
lowing prior works [ 1, 15,19,29,38,50], we report the min-
imum ADE among K ADEs obtained from K predictions.
Final Displacement Error (FDE) FDE is L, distance be-
tween the GT and prediction at the final future step ¢, .
Same as ADE, the minimum FDE among K predictions is
reported.

Kernel Density Estimate-based Negative Log Likelihood
(KDE NLL) To determine if the generative model learns
the characteristics such as variance and multi-modality of
the distribution, [19,38] introduce KDE NLL. First, the pdf
is estimated by Kernel Density Estimate (KDE) using the
K sampled predictions at each future timestep, and then the
mean log-likelihood of the GT trajectory is obtained based
on the pdf. We adopt the approach in [38] and their publicly
released code.

Environment Collision-Free Likelihood (ECFL) Realis-
tic trajectory predictions should not violate environmental
restrictions. [42] proposes ECFL, the probability an agent
has a path that is free of collision with the environment
defined as ECFL(p,E) = L1 S°F TTiL, Elpito,pisal,
where E is the scene environment represented as a binary
map with 1s and Os indicating the navigable and the non-
navigable spaces, respectively. p are the K predicted posi-
tions of an agent under the temporal horizon ¢ ;. We report
ECFL in percent points, where 100% means no collisions.

D. Statistical Validity Test

Since our evaluation used multiple datasets and four
measures, we conducted additional analyses using the aver-
age rank [9] and the Bayesian statistical validity analysis [2]
to assess the significance of the obtained results.

D.1. The Friedman Test

We borrow notations from [9] in this section. We first
calculated the Friedman statistic [12] as
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where we compare k£ methods tested on /N datasets. Here,
R; denotes the average ranks of algorithm j over all N
datasets, i.e.,
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where rf denotes the rank of j-th method among £ algo-
rithms tested on ¢-th dataset among NV total datasets. One
can approximate the probability distribution of the value as
a Chi-square distribution. If k£ or N is small, one needs to
find exact critical value from the precomputed table. Iman
and Davenport [ 18] proposed a better statistic using the x%,
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and this follows the F-distribution with (k — 1) and (k —
1)(IV — 1) degrees of freedom.

In our case, we have four methods to compare (k = 4)
and 24 datasets (N = 24). We considered each evalua-
tion setting (hyperparameter (/') choices, datasets, perfor-
mance measures) as different datasets (2 x 3 x 4). Hence-
forth, we look for the F-distribution’s critical value for 3 and
69 degrees of freedom. At 95% confidence level, the (up-
per) critical value is 2.737. Using the ranks obtained from
our quantitative result, Fir is 21.278 which is significantly
larger than the critical value, rejecting the null hypothesis,
which states that all methods are equivalent.

As a post-hoc test, we conducted the Nemenyi test [30].
In the test, if two methods’ average rank difference is larger
than the critical difference defined as

ke(k+ 1)
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CD = q,
then there is a significant performance difference between
the two methods. Here, g, is 2.569 for k = 4 at 95% con-
fidence level, hence C'D = 0.957. Since the average rank
of our method is 1.33 and that of AF is 2.33, we argue that
our method outperformed AF in the evaluation. Note that
the average ranks of Y-Net and T++ are 2.92 and 3.42, re-
spectively.

D.2. Bayesian Signed Rank Test

We also provide significance testing result based on
modern Bayesian statistical validity analysis to address po-
tential limitations of the traditional frequentist null hypoth-
esis significance testing [2]. We ran the Bayesian signed-
rank test [3] for each pair of methods and for each measure.
This test also accounts for the region of practical equiva-
lence (ROPE) [24]. If the difference between two methods
is smaller than the ROPE, then there is no practical differ-
ence in performance.



In our evaluation, we have several metrics and datasets
and each needs a careful definition of ROPE to conduct a
proper analysis. First, for ADE and FDE, we adopted the
standard 0.5 meter difference as the ROPE [38]. However,
one of the datasets we used, SDD, does not have the geo-
metric calibration data to obtain metered measures in its test
set, unlike PFSD and nuScenes. Henceforth, prior works,
e.g., [29], used pixel differences to calculate the ADE and
FDE. Therefore, we used 1 pixel difference for the ROPE,
considering the resolution of the image and approximate
sizes of real world structures and objects in the scene. It
should be noted that, we also tested with a larger ROPE (3
pixels), but there was no change in the conclusion of this
analysis. For KDE NLL, it is challenging to define ROPE
since NLL is not a scale, but a likelihood value. So we set
ROPE as zero for NLL. For ECFL, since it has same scale
as accuracy [0, 100], we use the standard 1% difference for
the ROPE.

In Tabs. D.1 to D.4, we report the Bayesian signed-rank
pairwise test result for C'(4,2) = 6 comparisons. Tab. D.5
summarizes all the aforementioned pairwise results by com-
puting the average ranks of each method, in each of the ta-
bles Tabs. D.1 to D.4, based on the number of times the
method "won”, "tied”, or "lost” in the pairwise comparison.
For instance, in Tab. D.3, MUSE-VAE won 3-out-of-6 times,
T++ 2/6, AF 1/6, and Y-Net 0/6 times, resulting in ranks of
1, 2, 3, and 4 for the four methods, respectively. Based on
this, and in line with the traditional frequentist analysis in
Sec. D.1, we conclude that our MUSE-VAE outperforms
the SOTA competitors, on average, across all datasets and
measures.

E. Additional Qualitative Evaluations

Fig. E.1 shows qualitative results in the same manner
as those presented in Fig. 4 of the Main paper. Here we
investigate several key scenarios from each dataset, be-
yond the‘fork-in-the-road’ introduced in Fig. 4. Scenarios
were selected to highlight the challenges all models face
in forecasting the environment-aware trajectories and offer
insights into how the models behave when faced with envi-
ronment constraints, in order to reveal the models’ benefits
and downsides.

The difference in the environment configurations be-
tween the two PFSD instances, Fig. E.1b here and Fig. 4b
in the Main paper, is that Fig. E.1b has no obstacles in
the direction of the observed, past trajectory while Fig. 4b
presents obstacles at the bottom of the map in the same di-
rection. Thus, comparing the predictions, our method pre-
dicted both straight ahead and left or right curved trajecto-
ries for Fig. E.1b, while producing only left or right curves
for Fig. 4b.

Fig. E.1d shows an example when the ground truth tra-
jectory passes right next to the ‘structure’ area, which is

Table D.1. Comparing ADE of methods using Bayesian signed-
rank test. For PESD and nuScenes, ROPE is defined as 0.5 meters.
For SDD, ROPE is 1 pixel.

PFSD, nuScenes
Method A | p(A >B) | p(A~B) | p(A <B) | Method B
T++ 0.00 0.27 0.73 Y-Net
T++ 0.00 0.27 0.73 AF
T++ 0.00 0.27 0.73 Ours
Y-Net 0.00 0.27 0.73 AF
Y-Net 0.00 0.27 0.73 Ours
AF 0.00 1.00 0.00 Ours
SDD
Method A | p(A >B) | p(A=B) | p(A <B) | Method B
T++ 0.00 1.00 0.00 Y-Net
T++ 0.00 1.00 0.00 AF
T++ 0.00 0.27 0.73 Ours
Y-Net 0.00 1.00 0.00 AF
Y-Net 0.00 0.56 0.44 Ours
AF 0.00 0.27 0.73 Ours

Table D.2. Comparing FDE of methods using Bayesian signed-
rank test. For PESD and nuScenes, ROPE is defined as 0.5 meters.
For SDD, ROPE is 1 pixel.

PFSD, nuScenes
Method A | p(A >B) | p(A~B) | p(A <B) | Method B
T++ 0.00 0.27 0.73 Y-Net
T++ 0.00 0.16 0.84 AF
T++ 0.00 0.20 0.80 Ours
Y-Net 0.00 0.27 0.73 AF
Y-Net 0.00 0.27 0.73 Ours
AF 0.00 0.95 0.05 Ours
SDD
Method A | p(A >B) | p(A~B) | p(A <B) | Method B
T++ 0.00 0.04 0.96 Y-Net
T++ 0.00 0.04 0.96 AF
T++ 0.00 0.04 0.96 Ours
Y-Net 0.00 1.00 0.00 AF
Y-Net 0.00 1.00 0.00 Ours
AF 0.00 1.00 0.00 Ours

non-navigable; the heading direction is mostly blocked by
the structure. Our model can make predictions that do not
violate the environmental constraints, going back or turning
left to search for navigable space. On the other hand, the
predictions from the baseline models collide with the obsta-
cles, a violation of the desired behavior.

Fig. E.1f is a fork-in-the-road scenario like Fig. 4f, with
another drivable area on the other side of the fork in the



Table D.3. Comparing KDE NLL of methods using Bayesian
signed-rank test. ROPE is 0 in this case.

Method A | p(A >B) | p(A=~B) | p(A <B) | Method B

T++ 1.00 0.00 0.00 Y-Net
T++ 0.99 0.00 0.01 AF
T++ 0.00 0.00 1.00 Ours
Y-Net 0.31 0.00 0.69 AF
Y-Net 0.00 0.00 1.00 Ours
AF 0.00 0.00 1.00 Ours

Table D.4. Comparing ECFL of methods using Bayesian signed-
rank test. ROPE is 1%.

Method A | p(A >B) | p(A=~B) | p(A <B) | Method B

T++ 0.00 0.00 1.00 Y-Net
T++ 0.00 0.01 0.99 AF
T++ 0.00 0.00 1.00 Ours
Y-Net 0.03 0.27 0.70 AF
Y-Net 0.00 0.05 0.95 Ours
AF 0.00 0.03 0.97 Ours

Table D.5. Average rank of the four contrasted approached, based
on the Bayesian Signed Rank pairwise test results in Tabs. D.1
to D.4, across all measures.

Method Average Rank of Bayesian Test Results

T++ 3.50
Y-net 3.00

AF 2.16
Ours 1.33

road. Although the traffic flow in this area is in the direction
opposite to the predicted trajectory, it still is a drivable area.
Since we have never provided a clear guidance for learn-
ing in which direction to drive based on the ‘correct’ lane,
our model simply treats this area as drivable and makes one
possible prediction. It can be seen that the baseline models
cannot consider this possibility, instead making many pre-
dictions into the undrivable area.

Finally, Tab. E.1 shows the corresponding quantitative
results for each dataset with metrics introduced in Ap-
pendix C. The results in the table are well-aligned with
the visualization in the Tab. E.I. MUSE-VAE shows the
highest ECFL in all datasets, suggesting our model fore-
casts environmentally-compliant trajectories. Moreover,
our model shows the best performance for all datasets in
terms of ADE; it similarly leads in FDE performance in
SDD and nuScenes. MUSE-VAE attains the second best re-
sults in FDE for PFSD, trailing the top Y-Net by only 0.01
meter. Similarly, MUSE-VAE approaches the top method
(AF) in KDE NLL for nuScenes. The third ranked per-
formance of our model in KDE NLL of SDD stems from

Table E.1. Quantitative results of Fig. E.1. PFSD and SDD with
tp = 3.2s (8 frames) and ¢ty = 4.8s (12 frames), and nuScenes
with ¢, = 2s (4 frames) and t; = 6s (12 frames). Errors are in
meters for PFSD and nuScenes, and in pixels for SDD.

Dataset | Model | ADE | | FDE | | KDENLL | | ECFL ¢

T++ | 0.6 | 0.05 -1.54 95

Yonet | 0.1 | 0.04 -0.76 100

( 11;1:_512)0) AF | 012 | 005 -0.50 100

= Ours | 0.08 | 005 -4.24 100
T++ | 415 | 3.8 6.58 80

Yonet | 3.15 | 2.88 7.77 65

( 1?1320) AF | 1344 | 7.10 8.69 20

= Ours | 286 | 234 8.45 100
T++ | 492 | 4091 3.91 0

uScenes | YTEU | 308 | 299 6.21 40
(‘;( ielgj AF | 117 | 1.08 3.68 30
= Ours | 0.89 | 0.73 3.84 90

those predictions heading to the left or going back toward
the past trajectories. While away from the specific trajec-
tory taken by the agent in this instance, the behaviors pre-
dicted by MUSE-VAE are very reasonable strategies for an
agent who reaches a dead-end.

F. Limitation of SDD Segmentation

In our evaluations, we used the semantic map of SDD
provided by Y-net. They classify the scene environment into
the five classes described in Appendix B. In Fig. F.1, we
show SDD scene images and their semantic maps of the
scene (a) coupa_0 and (b) little_3. Red points indicate all
trajectories in each scene.

There are two major problems in learning this map. First,
it is not clear which semantic classes ought to be considered
as navigable. Based on the class names, only pavement
and road may be reasonably navigable space, but as seen
in Fig. F.1, there are trajectories on tree, terrain, and struc-
ture. For the evaluation, we set only the ‘structure’ class
as the obstacle class. Secondly, the segmentation regions
are semantically inaccurate. Near the bottom-center of the
semantic map of Fig. F.1a, we can see the squares all col-
ored in yellow, which indicates a tree. However, looking at
the scene image, we notice that not all of those regions are
trees.

These inaccurate annotations give rise to the model con-
fusion on how to deal with the map information when de-
termining the trajectories that should only exist in naviga-
ble spaces. This affects MUSE-VAE more significantly than
other models since the decision of long-term and short-term
goals in Macro-stage heavily depend on the local map in-
formation; this subsequently leads to slightly lower ECFL
for SDD in Sec. 4.2 of the Main paper, compared to other
approaches.



G. Challenges and Future Work

In this paper, we proposed to “boost” the learning of
models that forecast realistic, environment-aware trajecto-
ries by leveraging the large body of scene-compliant sim-
ulated trajectories in PFSD, a complex environment with
intricate navigable / non-navigable structures. These struc-
tures were designed to induce diverse agent-environment
behaviors, hence data to train models, that generalize well
to many real-world scenarios.

Another component that makes trajectory prediction re-
alistic is the absence of collisions among the agents them-
selves. One way to learn models that accomplish this, aside
from collecting large bodies of real-world data, is to create
synthetic datasets that reflect the desired agent-agent rela-
tionships, much like PFSD captures the environment-agent
interactions. Such trained models would then transfer to the
(smaller) real world datasets.

However, synthesizing collision-free models for agent-
agent interactions is a challenging task. While designing
scenarios where only the inter-agent distance is kept above
a certain threshold is possible, such instances directly elim-
inate more complex yet desired behaviors such as agents
walking together as a group or agents passing by each other
in the opposite directions. Moreover, the behavioral pat-
terns determining inter-agent proximity are also contextu-
alized by the surrounding environment. For instance, the
density of agents (hence their mutual displacements), will
be higher (displacements lower) in very narrow navigable
spaces compared to those in wider, open environments.

We leave it as an open research challenge to study such
integrated models that can consider the inter-agent relation-
ship in addition to the agent-environment interactions we
tackled here using our MUSE-VAE.
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Figure E.1. Left: Macro-stage results of (a) PFSD, (c) SDD, and (e) nuScenes respectively. In the first column, the Long-term Goal (LG)
heat map prediction from LG-CVAE is overlaid on the local semantic map. The following three columns are two Short-term Goals (SG)
and one LG from SG-Net. Here we show only two different sampling generations in each dataset. The blue and orange lines indicate
GT past and GT future trajectories, respectively. GT LG and SGs are marked with ‘x’. Right: Complete trajectory predictions of (b)
PFSD, (d) SDD, and (f) nuScenes respectively. In each dataset, the 1st/2nd/3rd/4th image from top-left to bottom-right is from Micro-
stage of ours/Trajectron++/Y-net/AgentFormer, respectively. The blue, orange, and red lines indicate GT past, GT future, predicted future
trajectories, respectively.
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Figure F.1. SDD scene image and its semantic map of the scene
(a) coupa-0 and (b) little_3. Red points indicate all trajectories in
each scene. Trajectories are found in the region with classes like
‘structure’ or ‘tree’, which is unexpected in terms of navigability.
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