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In this supplementary section, we first provide short mo-
tion videos generated using our method in Section S.1. We
then report the additional results of our ablation study in
Section S.2. In Section S.3, we provide implementation de-
tails for the proposed framework. Lastly, we report more
qualitative deformation results in Section S.4.

S.1. Motion Videos

We provide brief descriptions for our video attachment
that includes short motion animations created by our im-
age deformation method. Our video, which is available at
https://youtu.be/gHxwHxIZiuM, contains anima-
tions of three Mixamo [6] characters – Michelle, Mousey,
and Ortiz – in various motions. We also compare our video
results to those created using all the alternative methods dis-
cussed in Section 4 of the main paper.

To create the animations, we deform the rendered im-
ages of each Mixamo [6] character with manually-selected
32 control point handles and their target positions. Note that
we use the same experimental setups as in the Mixamo ex-
periment in the main paper (please refer to Section 4). In
the video, our method is shown to produce 3D-aware im-
age deformations that can express various motions of each
character. In addition, our method can generate more plau-
sible deformations in comparison to the alternative meth-
ods, which often result in undesired artifacts.

S.2. Ablation Study

S.2.1 Learning Deformation Weights

We compare our method of learning the shape Laplacian
to that of directly learning the deformation weights (i.e.,
bounded biharmonic weights [7]). To this end, we imple-
ment a network that can infer the handle-based deformation
weights given a 3D reconstruction represented as a point
cloud P = {pi}i=1···n and a set of user-defined control
points {hj}j=1,...,m

1. The network consists of three mod-
ules: Feature Extraction Module, Control Points Embed-

* equal contributions
1Among the various types of control handles, we consider point handles

in this experiment.

ding Module, and Weight Regression Module. Feature Ex-
traction Module maps each point pi in the input point cloud
P to a feature vector fi. We use Point Transformer [15] ar-
chitecture as in our original framework. Control Points Em-
bedding Module maps a set of control points {hj}j=1,...,m

to a context vector c that encodes information about the
user handle selection. We use a variant of PointNet [11] for
the module architecture, since Control Points Embedding
Module is desired to extract a feature that is permutation-
invariant to the input control points. Specifically, we use
a shared multilayer perceptron (MLP) network composed
of three layers (each of them followed by batch normaliza-
tion, LeakyReLU, and dropout) and a max pooling layer
to aggregate information from all the control points. Next,
Weight Regression Module regresses a deformation weight
wj,i associated with the handle hj at point pi, given the
following concatenated feature vector:

gji = [fhj ; c; fi], (1)

where fhj
denotes a feature vector at the j-th point handle

(i.e., hj) that is produced by the Feature Extraction Module.
To implement this module, we use the same architecture as
that of Cotangent Laplacian Prediction Module, excluding
KNN-Based Point Pair Sampling (KPS) and symmetric fea-
ture aggregation components. To train our framework, we
use L1 losses to inject the direct supervisions for the pre-
dicted deformation weights and the intermediate weights,
which is analogous to W in our original framework (please
refer to Section 3.2 in the main paper). In our experimental
setting, we specifically train our network to estimate defor-
mation weights for 16 control point handles that are sam-
pled via farthest point sampling to match our test scenario.

As shown in Table S1, our original approach of learning
the shape Laplacian yields more accurate deformation re-
sults compared to that of directly learning the deformation
weights. As learning deformation weights is dependent on
the control handle selection, we also empirically observed
that the deformation weight prediction does not generalize
well to a set of control handles whose distribution is dif-
ferent from those of the training examples (e.g., when 16
control points are selected via random sampling).

https://youtu.be/gHxwHxIZiuM


Table S1. Learning the deformation weights vs. learning the
shape Laplacian. All experimental setups are the same as in the
DFAUST [3] experiments in the main paper (please refer to Sec-
tion 4.1). We consider 16 point handles selected via farthest point
sampling for both network training and test.

Metric Learning w Learning A (Ours)

Weight L1 (×100) ↓ 9.08 2.10
Shape CD (×100) ↓ 8.38 1.81
Shape HD (×0.1) ↓ 0.44 0.42

S.2.2 Qualitative Comparisons

We additionally provide the qualitative results of our ab-
lation study discussed in Tables 4 and S1. In Figure S1,
columns 3, 4, 5 and 6 correspond to the ablation study pre-
sented in Table 4 in the main paper. Specifically, −KPS
and −α indicate settings where KPS or α is removed from
our Laplacian Learning Network, respectively. EM Only
and AD Only denote settings where γ1 and γ2 functions
in our Cotangent Laplacian Prediction Module are both in-
stantiated as element-wise multiplication and absolute dif-
ference, respectively. The column 7 corresponds to the abla-
tion study presented in Table S1 in this supplementary doc-
ument, where Learning w denotes the method to directly
learn the handle-based deformation weights. Overall, we
can observe that the originally proposed method yields the
most plausible deformation results than those of the com-
pared settings.

Input GT
Deform

−KPS −α EM Only AD Only Learning w Ours

Figure S1. Qualitative results of our ablation study (best
viewed with 200% zoom-in). Input denotes the source shape and
GT Deform indicates the ground truth deformed shape that is com-
puted using the ground truth shape intrinsics. All experimental se-
tups are the same as in the experiments on DFAUST [3] dataset in
Section 4.1. We use 16 FPS point handles for each source shape.

S.3. Implementation Details

We now report more details of our implementation.

S.3.1 3D Reconstruction Network

As mentioned in the main paper, we use PIFu [12] to recon-
struct an intermediate 3D point cloud from the input image
as a prerequisite step to our method. Along with the main
PIFu module that learns an implicit function to reconstruct
a 3D object geometry, we also train Tex-PIFu module that
additionally infers RGB values at given 3D positions of the
object surface. Since Tex-PIFu can estimate texture for the
object parts that was originally occluded in the input image,
it allows our method produce image deformations that can
disclose such occluded parts. When training PIFu and Tex-
PIFu, we set the number of epochs as 15 and 10, respec-
tively. We use a batch size of 10 for both modules. Other
training setups are the same as those of the original PIFu
framework (refer to [12] for more details).

S.3.2 Network Training

The three modules in our Laplacian Learning Network (i.e.,
Feature Extraction Module, Cotangent Laplacian Prediction
Module, and Inverse Mass Prediction Module) are trained in
a joint manner. We use a batch size of 8 and set an initial
learning rate to 0.1 with a polynomial learning rate decay
schedule. Other training details are the same as in the orig-
inal Point Transformer segmentation network (refer to [15]
for more details).

S.3.3 Metric Computation

In the experiments on DFAUST [3] dataset (please refer
to Section 4.1 in the paper), we consider three evaluation
metrics: (1) L1 distance between the ground truth and the
predicted deformation weights, (2) Chamfer distance and
(3) Hausdorff distance between the ground truth and the
predicted deformed point clouds. Since the ground truth
3D mesh corresponding to each point cloud is available in
DFAUST dataset, we first obtain the ground truth deforma-
tion weights computed using the ground truth topology of
the volume mesh generated using [5]. In the same man-
ner, we compute the ground truth deformed shape using the
ground truth deformation weights and the specified control
handle configurations. Since our method models a defor-
mation based on a control handle manipulation, we need to
specify the initial handle positions and their transformations
to generate the deformed shapes for evaluation. To this end,
we first sample the initial point handles (with the number
of handles specified in Table 1) via farthest point sampling.
Given the source shape and the sampled control points, we
retrieve the positions of the semantically aligned points in
other shapes in the test set by using the shape correspon-
dences provided in DFAUST dataset. We then use them as
target control point positions. In our experiment, we ran-
domly generate 4 different deformations for each test shape
and use them to evaluate our deformed shape quality.



S.4. Additional Qualitative Results

S.4.1 Visualization of Learned Deformation Weights

We visualize our deformation weights learned on the point clouds obtained from DFAUST [3] dataset. We show our weights
in comparison to those directly computed from the alternative methods (i.e., PSR [8], APSS [4], BPA [2], DeepSDF [10],
DGP [14], MIER [9], PCDLap [1], and NMLap [13]). In Figure S2, we show that our method can obtain more accurate
deformation weights than the compared scenarios. Especially for the regions around the hands (indicated by red rectangles),
our deformation weights are smoothly propagated from the selected control point on the fingertip to intrinsically nearby
points on the same hand. On the contrary, the compared settings cannot properly distinguish between the two hands. In the
same figure, we additionally include the examples of the deformed shapes computed using the shown deformation weights.
Our method can produce more plausible shape deformation compared to the other methods.

Figure S2. Visualization of Learned Deformation Weights. Light green spheres indicate the point handles associated with the shown
deformation weights, while dark green spheres are the other point handles. The weight intensity is visualized via color coding (i.e., red for
high intensity and blue for low intensity). All experimental setups are the same as in the DFAUST [3] experiment in the main paper (please
refer to Section 4.1).



S.4.2 More Comparison Results

We also provide more qualitative results in comparison to the alternative methods (i.e., PSR [8], APSS [4], BPA [2],
DeepSDF [10], DGP [14], MIER [9], PCDLap [1], and NMLap [13]) discussed in Section 4 in the main paper. Specifically,
these examples are sampled from our video attachment (please refer to Section S.1), which contains the image deformation
results of three Mixamo [6] characters – Michelle, Mousey, and Ortiz.

Input
Image

PSR                 APSS                BPA              DeepSDF            DGP              MIER             PCDLap          NMLap            Ours

Figure S3. Comparison results on Mixamo [6] Michelle images. Red circles indicate the image parts with visual artifacts.
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Figure S4. Comparison results on Mixamo [6] Mousey images. Red circles indicate the image parts with visual artifacts.
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Figure S5. Comparison results on Mixamo [6] Ortiz images. Red circles indicate the image parts with visual artifacts.
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