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1. Analysis on Reference Video Types

While we assume that a triplet of ultra-wide, wide-angle,
and telephoto videos is given, our approach uses only a
wide-angle video as a reference to perform super-resolution
of an ultra-wide video, and a telephoto video is used only
as additional supervision in the adaptation stage. One may
wonder why our approach does not utilize a telephoto video
as a reference as it provides the highest-resolution details.
To answer the question, this section provides an analysis
of the effect of reference video types on the SR quality.
Specifically, among different combinations of wide-angle
and telephoto videos, we find the best combination for ref-
erence video(s) and for supervision to train our network. In
the following, we use the terms ‘input reference’ and ‘ref-
erence supervision’ to indicate a reference video that is fed
into the network, and a high-resolution video used for ad-
ditional supervision, respectively. We denote them by IRef

and IRefHR , respectively, as done in the main paper.
To quantitatively analyze the effect of reference combi-

nations, we prepare five models that are trained with only
the pre-training stage (Table 1), where each model is trained
with a different combination of wide-angle and telephoto
videos for the input reference IRef and the reference su-
pervision IRefHR . We also prepare a model taking dual ref-
erences, both wide-angle and telephoto videos. To this end,
we modify the reference alignment and propagation module
(Sec. 3.3 in the main paper) to separately obtain features of
a wide-angle frame h̃Wide

t and features of a telephoto frame
h̃Tele
t that are aligned to ILR

t . Moreover, the propagative
temporal fusion module is modified to take both h̃Wide

t and
h̃Tele
t , and utilizes confidence maps cWide

t and cTele
t com-

puted by matching wide-angle and telephoto frames to an
LR ultra-wide frame, respectively. The module also utilizes
accumulated confidence maps c̃Wide,{f,b}

t and c̃Tele,{f,b}
t

as guidance for temporal Ref features during the fusion
(Fig. 1). For training the model taking dual references, we

Code and dataset: https://github.com/codeslake/RefVSR

IRef IRefHR Patch size PSNR↑ SSIM↑ Params (M)
tele tele 32×32 29.81 0.893 4.277

wide tele 32×32 30.41 0.895 4.277
wide wide 32×32 30.36 0.897 4.277
dual dual 32×32 30.39 0.888 5.076
wide wide 64×64 31.68 0.914 4.277

Table 1. Quantitative comparison on models trained with different
reference video types. In the top row, IRef , IRefHR , and patch
size indicate the input reference, reference supervision, and patch
size used for the pre-training stage, respectively. ‘wide’, ‘tele’,
and ‘dual’ indicate wide-angle, telephoto, and both wide-angle and
telephoto videos, respectively. Only the pre-training stage is used
for training the models.
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Figure 1. Modified propagative temporal fusion module for han-
dling dual reference features.

use both a wide-angle IWide
t and telephoto ITele

t frames for
the proposed pre-training loss ℓpre (Eq. 10 in the main pa-
per). Specifically, ℓpre is modified as follows:

ℓpre =ℓrec(I
SR
t , IHR

t )+

λpre

(
ℓMfid(I

SR
t , IWide

t∈Ω ) + ℓMfid(I
SR
t , ITele

t∈Ω )
)
.
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Figure 2. Qualitative comparison on 8K 4×VSR results from mod-
els trained with different reference video types for a supervision
IRefHR in the adaptation stage. The first column shows LR and
Ref real-world HD inputs. The other columns show zoomed-in
cropped SR results of models taking wide-angle video as an in-
put reference IRef , but trained with different videos for the ref-
erence supervision IRefHR (e.g., ‘wide-tele’ indicates that wide-
angle and telephoto videos are used for IRef and IRefHR , respec-
tively). Red and green boxes indicate inside and outside the over-
lapped FoV between LR and Ref frames, respectively.

We first verify that a wide-angle video is the best option
for an input reference IRef . In Table 1, compared to the
model utilizing a telephoto video as IRef (the first row of
the table), the models using a wide-angle video (from sec-
ond to fourth rows) show much better SR performance. This
is mainly due to the larger matching coverage of a wide-
angle frame on an ultra-wide frame (about 25%) than that
of a telephoto frame (about 6.25%). Larger matching cov-
erage allows fine details of reference frames to be widely
transferred to a resulting SR frame, which contributes sig-
nificantly in reconstructing high-quality results.

Moreover, we verify that a wide-angle video is also the
best choice for reference supervision IRefHR needed for the
pre-training stage. While it may look reasonable to use a
telephoto video as IRefHR to transfer the resolution of a
telephoto video, we found that it does not improve the SR
quality much (the second row vs. the third row). This is be-
cause both wide-angle and telephoto frames lose details as
they are downsampled 2× and 4×, respectively, for being
used as supervision for the pre-training stage to match the
scale of contents with a resulting SR frame.

One question that naturally follows is why not utilize
both wide-angle and telephoto videos as dual references.
However, the SR performance of the model taking dual
references is almost the same as models taking a single
wide-angle reference video (the third vs. the fourth rows).
This indicates that it is not worth utilizing dual reference

videos. A slight SR performance gain does not fully justify
extra memory and computational costs (58.1T and 71.5T
MACs1 for the single and dual reference models, respec-
tively) needed for processing additional reference video.

According to the analysis, we take advantage of the
broad matching coverage of a wide-angle video and use it
as the input reference IRef for both pre-training and adap-
tation stages. Moreover, we use wide-angle videos as the
reference supervision IRefHR for the pre-training stage as
we can have a larger training patch size (64×64 in practice)
than the patch size possible when a telephoto video is used
for the supervision (32×32 at maximum, due to small over-
lap between a telephoto and a downsampled LR frames),
which boosts SR quality (the last row in the table).

In the adaptation stage, however, we can establish a large
patch size even when a telephoto frame video is used as
the reference supervision IRefHR because downsampling is
not required in the real-world scenario. We thus directly use
a telephoto video as reference supervision IRefHR for the
adaptation stage to take advantage of their finest details in
reconstructing SR results from a real-world HD video. The
benefit of taking a telephoto video as supervision for the
adaptation stage is qualitatively shown in Fig. 2. In the fig-
ure, compared to the model trained with a wide-angle video
as reference supervision IRefHR (the third column in the
figure), the model trained with a telephoto video as IRefHR

shows sharper and finer details (the last column).

2. Effect of Propagative Temporal Fusion
In this section, we analyze the effect of the propagative

temporal fusion module on the SR quality inside and out-
side the overlapped FoV between an LR frame and the cor-
responding Ref frame. The proposed propagative temporal
fusion module performs fusion between Ref features h̃Ref

t

at the current time step and temporally aggregated features
ĥ{f,b}
t propagated from the previous step. During the fusion,

the module utilizes the matching confidence ct and the accu-
mulated matching confidence c{f,b}t±1 as guidance for h̃{f,b}

t

and ĥ{f,b}
t , respectively.

The proposed propagative temporal fusion module im-
proves the SR quality of both regions inside and outside
the overlapped FoV, as the module utilizes the accumulated
matching confidence c{f,b}t±1 during the fusion. This is be-
cause c{f,b}t±1 provides a cue for the temporal propagative fu-
sion module to select well-matched temporal Ref features
aggregated in temporally aggregated features ĥ{f,b}

t .
Fig. 3 qualitatively demonstrates the effect of the prop-

agative temporal fusion module. For the evaluation, we pre-
pare models with and without the propagative temporal fu-
sion module. For the model without the propagative tempo-

1 Computational costs are measured as the number of multiply-accumulate
operations (MACs) computed on 1920×1080 frames.
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Figure 3. Effect of the proposed Propagative Temporal Fusion (PTF) module. ct is the confidence map computed when the input LR frame
ILR
t is matched with the Ref frame IRef

t at the current time step. c̃ f
t is the accumulated matching confidence of the forward propagation

branch. As can be seen in the figure, confidence values in c̃ f
t are accumulated following the motion in the video. The red and green boxes

show zoomed-in cropped patches from the region inside and outside the overlapped FoV between ILR
t and IRef

t , respectively. Note that
the matching confidence maps are noisy due to HEVC/H.265 compression artifacts contained in video frames.

ral fusion module, we use a modified fusion module that
does not utilize accumulated matching confidence c{f,b}t±1

during the fusion. Specifically, we modify Eq. 6 in the main
paper for the modified fusion module:

h
{f,b}
t = {conv(ct)⊗ conv([h̃Ref

t , ĥ
{f,b}
t ])}+ ĥ

{f,b}
t .

In Fig. 3, matching confidence ct at the current time step
shows a high matching score mainly concentrated in the re-
gion inside the overlapped FoV between an LR frame ILR

t

and a Ref frame IRef
t (the third row of the figure). However,

in the accumulated matching confidence c̃ f
t , the matching

scores spread out following the motion of the video (the
fourth row). As we can observe from the figure, compared
to the model with the modified fusion module that does not
utilize c̃ f

t , the model with the propagative temporal fusion
module restores more accurate structures and details for the
region inside the overlapped FoV (red boxes in the figure),
due to c̃ f

t providing better matched temporal Ref feature

during the fusion. Moreover, the model with the propagative
temporal fusion module shows finer details in reconstructed
SR frames for the region outside the overlapped FoV (green
boxes), as c̃ f

t guides temporal Ref features outside the over-
lapped region to be utilized during the fusion.

3. Effect of Bidirectional Scheme

The effect of the bidirectional scheme has been widely
explored in previous VSR works [1, 2, 3]. To validate the
effect on our method, we conduct the ablation study on the
model with a unidirectional forward branch (Table 2), in ad-
dition to the ablation study reported in Sec. 5.1 of the main
paper. In the table, models with bidirectional branches show
better VSR quality than models with only a forward branch.
Moreover, the proposed components (ℓMfid and PTF in the
table) improve the VSR performance for both unidirectional
and bidirectional schemes.



F{f,b} ℓMfid PTF PSNR↑ SSIM↑ Params (M)
30.07 0.890 4.2653

✓ ✓ 31.02 0.906 4.2656
✓ 30.71 0.894 4.2768
✓ ✓ ✓ 31.68 0.914 4.2772

Table 2. Ablation study including bidirectional branches. F{f,b}
indicates the model with bidirectional branches. ℓMfid is the model
trained with the multi-Ref fidelity loss. PTF is the model with the
propagative temporal fusion module.

Inter-frame RA
PSNR↑ SSIM↑ Params MACs

OF PM OF PM (M) (T)
✓ ✓ 29.33 0.872 4.408 8.303
✓ ✓ 31.68 0.920 3.059 9.364

✓ ✓ 29.35 0.878 5.627 1.975
✓ ✓ 31.68 0.914 4.277 2.737

Table 3. Effect of alignment modules for inter-frame alignment
(Inter-frame) and reference alignment (RA). OF and PM indicate
the optical flow [6] and patch-match-based alignment [7] methods,
respectively. Our model adopts the combination in the last row.
MACs are computed on 256×256 frames.

4. Effect of Alignment Methods
For the proposed RefVSR network, different alignment

methods can be used for inter-frame and reference align-
ments. For inter-frame alignment, resolving local disparity
is important [4], and we use flow-based alignment [6] that
shows similar VSR quality to patch-match-based alignment,
but with much smaller computational cost (2nd vs. 4th rows
in Table 3). For reference alignment, establishing global
correspondence is important [5], and we adopt patch-match-
based alignment [7] that shows significant performance gain
with slight computational overhead compared to flow-based
alignment (3rd vs. 4th rows in the table).

5. Failure Case
Our network may fail to accurately utilize Ref frames for

a resulting SR frame when matching between LR and Ref
frames is inaccurate. Fig. 4 qualitatively shows the failure
cases. In the figure, we show an LR patch (the second col-
umn), and its corresponding patches from a Ref frame (the
third column) and a resulting SR frame (the last column).
We can observe from the figure that when an LR frame does
not contain enough cue needed for accurate matching with
a Ref frame (e.g., texture patterns), our model fails to accu-
rately utilize Ref patches for recovering an SR frame.

6. Additional Qualitative Results
Figs. 5 and 6 show additional qualitative comparisons

on 8K 4×SR results from real-world HD videos in the
proposed RealMCVSR test set2. Note that all the com-
pared models are trained with the proposed training strategy
(Sec. 4 in the main paper).

LR LR (4×) Ref (2×) Ours

Figure 4. Failure cases. The first column shows LR real-world HD
input frames. The other columns show zoomed-in cropped patches
of bicubic upsampled LR and Ref input frames and SR frames
resulting from our method, corresponding to the red box in an LR
frame. In these examples, LR and Ref input frames do not contain
enough cues needed for accurate matching, and the structure and
detail in the results are not restored as those in Ref frames.
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Figure 5. Qualitative comparison on 8K 4×SR video results from real-world HD videos in the proposed RealMCVSR dataset.
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Figure 6. Qualitative comparison on 8K 4×SR video results from real-world HD videos in the proposed RealMCVSR dataset.


