
Self-Supervised Equivariant Learning for Oriented Keypoint Detection

- Suppelementary material -

In this supplementary material, we explain the reason for

the periodic results under synthetic rotations, the effect of

the number of keypoints in IMC2021 [7], and the details of

the outlier filtering algorithm in section 1. We show addi-

tional results on the Extreme Rotation dataset [8], the abla-

tion studies, and the separated results of the HPatches view-

point/illumination in section 2. We compare the qualitative

results of the predicted matches and orientation estimation

in section 3.

1. Additional analysis

In section 1.1, we explain the performance variation cy-

cles in Figs.4-5 of the main paper. In section 1.2, we explain

why the performance of IMC2021 [7] largely drops from

2,000 points to 8,000 points. In section 1.3, we explain the

detailed description of the outlier filtering algorithm.

1.1. Performance variation cycles in Figs.45

The periodic patterns in Figs.4-5 of the main paper are

caused by input variations due to the grid structure of pix-

els and the square shape of convolution filters. (1) Since an

image is a grid structure of pixels, a rotation of the image

induces an interpolation artifact for the corresponding posi-

tion, being minimal for a multiple of 90◦and maximal in be-

tween. Fig. 1 plots the average errors from the original pixel

values, which clearly show the same cycle. (2) Since convo-

lution filters take a square grid of pixels as input, a rotation

of the image makes the filters take a different set of pixels,

being the same set again for a multiple of 90◦. Therefore,

compared to the reference image, the rotated input to the

model varies most at 45◦, 135◦, 225◦, 315◦rotations, which

induces the degrading cycle. The similar pattern can also be

found in Fig.7 of ORB [14].

1.2. The effect of the number of keypoints in
IMC2021 [7]

Fig.13 and Sec.5.4 in [7] show that the pose estimation

accuracy increases until the number of keypoints reaches

8,000 and converges, so [7] adopt the 2,048 and 8,000 num-

bers of keypoints as standard evaluation protocols. A scene

of IMC2021 consists of the exhaustive pairs of 100 images,

and the accuracy increases at 8,000 keypoints than 2,048

keypoints as a keypoint in one image is likely to exist in the

other images.

Figure 1. RMSE of the corresponding pixel values in rotating im-

age.

1.3. Detailed descriptions of the outlier filtering

To show the effectiveness of the estimated orientations

in Table 3 of the main paper, we use an outlier filtering al-

gorithm. We filter the outlier matches through the global

consensus of the orientation values assigned in keypoints

of the tentative matches. We compute the orientation dif-

ference of two keypoints for each tentative match and then

select the most frequent difference from all those tentative

matches. This most frequent orientation difference is used

to define outlier matches by measuring how large each ten-

tative match deviates from it. Let m ∈ N
K×2 is a set of the

tentative matches about the pair of keypoint indices, which

is obtained using the mutual nearest neighbour matcher.

The inlierness p is defined for a tentative match of two key-

points with orientations oa and ob:

p(oa, ob, t) =

{

1, if |mode(~d)− d| ≤ t,

0, otherwise,

and d = (ob − oa + 360) mod 360,

(1)

where ~d ∈ R
K is a vector of the orientation differences,

mode function returns the most frequent value on the in-

put vector, t is a threshold to accept how far from the fre-

quent orientation difference, and K is the number of tenta-

tive matches. We use the outlier threshold t = 30◦ for Table

3 in the main paper. Note that oa and ob denote two orien-

tation values of a tentative match. We obtain the orientation

vector ~o ∈ R
K of our keypoints as follows:

~o a = argmax
g

δ(Oa;m:,0)g, ~o
b = argmax

g

δ(Ob;m:,1)g,

(2)

where O ∈ R
|G|×H×W is the rotation-equivariant orienta-

tion tensor, δ : R|G|×H×W → N
|G|×K selects the orien-

tation values from the keypoint coordinates using the key-

point indices in tentative matches m:,i, and g ∈ G.

2. Additional results

In section 2.1, we demonstrate the results of keypoint

matching on the Extreme Rotation (ER) benchmark [8].
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Det. Des. PCK@5 PCK@2 PCK@1

SuperPoint [5] SuperPoint [5] 0.255 0.194 0.112

SuperPoint [5] GIFT [8] 0.435 0.328 0.186

ours GIFT [8] 0.476 0.353 0.212

Table 1. PCK on the Extreme Rotation dataset [8]. The numbers

next to the PCK represent the pixel threshold to measure the cor-

rectness of the correspondence.

Loss. rep.

w/o out. filter. out. filter.

MMA
match.

MMA
match.

@3px @5px @3px @5px

Lori+Lkpts 57.6 73.1 79.6 505.8 76.7 82.3 440.1

Lori 30.0 44.4 56.6 403.3 49.6 61.9 291.6

Lkpts 50.8 69.8 76.8 358.7 75.2 81.2 226.7

Table 2. Ablation experiment about the dense orientation align-

ment loss Lori and the window-based keypoint detection loss Lkpts

in HPatches [1]. We use 1,000 keypoints and the HardNet descrip-

tor [10]. ‘out. filter.’ denotes the results with outlier filtering, and

‘match’ denotes the number of predicted matches.

In section 2.2, we show the results of ablation studies. In

section 2.3, we show the separated results of the HPatches

viewpoint/illumination.

2.1. Evaluation on the ER dataset [8]

Table 1 shows the Percentage of Correctly Matched Key-

points (PCK) in the ER dataset proposed in [8]. The ER

dataset contains image pairs with large rotations produced

by artificially transforming the images of HPatches [1] and

SUN3D [17]. We only use our keypoints without outlier fil-

tering by the orientations in this experiment. Our rotation-

invariant keypoint detector improves PCKs by finding the

more reliable keypoints within the extreme rotation setting

than SuperPoint [5]. In addition, the integration with ours

and GIFT [8] achieves the best PCKs compared to the pre-

vious best, SuperPoint [5] with GIFT [8], in the ER dataset.

2.2. Ablation studies

Ablations of the loss functions. Table 2 shows the results

without each loss function. Without Lkpts in the second row,

the repeatability score is decreased because the model can-

not obtain the keypoint at a reliable location, so the per-

formances of matching are also decreased. Although with-

out Lori in the third row, outlier filtering is working because

the rotation-equivariant representation O groups the rota-

tion information of local patterns by the rotation-equivariant

networks. However, using both loss functions as in the first

row yields higher MMA with more matches, which shows

both loss function contributes to generating reliable oriented

keypoints in an image.

Different pooling operators in networks. Table 3 shows

the results with different pooling operators to verify the de-

sign choice of our networks. We use max pooling, average

pooling, and bilinear pooling [8] for the keypoint detection

K O rep.

w/o out. filter. out. filter.

MMA
match.

MMA
match.

@3px @5px @3px @5px

Max 1x1Conv 57.6 73.1 79.6 505.8 76.7 82.3 440.1

Max Avg 54.6 70.6 77.4 483.1 76.2 81.5 397.8

Max Max 56.0 71.8 78.7 500.3 76.9 82.7 352.1

Avg 1x1Monv 55.7 72.3 78.6 480.6 75.9 81.7 339.6

Avg Avg 51.0 67.2 75.5 459.5 70.0 78.2 315.4

Avg Max 51.8 66.8 76.6 495.2 72.3 80.5 292.2

Bilinear 1x1Conv 27.6 42.2 51.2 374.7 50.3 57.8 243.5

Bilinear Avg 26.0 39.7 48.6 370.1 48.3 55.7 182.3

Bilinear Max 29.6 43.4 52.6 381.4 53.1 60.5 178.3

Table 3. Results using different pooling operators. Column K

denotes the operators of the keypoint detection branch, and column

O denotes the operators of the orientation estimation branch. We

use the same configuration of Table 2.

branch when collapsing the group, and 1 × 1 convolution,

average pooling, and max pooling for the orientation esti-

mation branch when collapsing the channel. We experiment

with all possible exhaustive pairs of these combinations. As

a result, the first row proposed in the main paper is best to

use max pooling for keypoint detection and 1× 1 convolu-

tion for orientation estimation. Collapsing the channel with

1 × 1 convolution in orientation estimation operates as a

weighted sum with the learned kernel, giving richer infor-

mation than max pooling and average pooling. Max pool-

ing on the orientation branch yields compatible MMAs, but

filters the excessive number of the predicted matches. We

guess the poor performance of bilinear pooling is overfit-

ting due to the excessive number of model parameters, al-

though the loss converges during training, and the repeata-

bility score of the validation set increases. Note that the

bilinear pooling [8] takes a very long time because our key-

point map should compute all regions while GIFT generates

only features of the extracted keypoints. Hence, the bilin-

ear pooling is not appropriate to collapse the group of our

method.

2.3. Separate results on HPatches

Tab. 4 shows the results of viewpoint/illumination on

HPatches. Our rotation-equivariant detector with the group-

invariant descriptor, GIFT [8], achieves the highest mean

matching accuracy (MMA) overall on both variations. Al-

though ORB [14] shows a higher repeatability under view-

point changes, the results with our keypoint detector con-

sistently show the better MMAs compared to ORB [14].

The repeatability score of our model is either the best or

the second-best for each variation.

3. Qualitative results

Figure 2 qualitatively compares the orientation maps of

SIFT [9], LF-Net [12], and ours. We use the synthetic im-

ages in Section 4.2 of the main paper. For obtaining the

SIFT orientation, we partition an entire image into patches

and estimate the dominant orientation of each patch except
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Detector Descriptor

Illumination Viewpoint

Rep.
MMA pred.

match.
Rep.

MMA pred.

match.@3px @5px @3px @5px

SIFT [9] SIFT [9] 42.3 48.0 51.0 405.4 41.8 51.0 53.9 406.5

ORB [14] ORB [14] 54.6 48.1 52.0 378.2 60.0 45.1 48.1 346.3

D2-Net [6] D2-Net [6] 26.9 47.7 61.8 411 12.9 23.2 35.8 333.9

LF-Net [12] LF-Net [12] 48.9 56.1 61.3 337.8 38.8 48.1 52.6 322.9

R2D2 [13] R2D2 [13] 48.5 70.0 80.6 399.3 42.6 59.3 69.2 320.0

SuperPoint [5] SuperPoint [5] 51.7 68.6 76.2 469.9 42.4 58.5 63.9 467.6

SuperPoint [5] GIFT [8] 51.7 69.5 77.5 484.2 42.4 68.2 74.6 508.3

Key.Net [2] HardNet [10] 54.1 70.8 78.3 497.4 57.7 74.1 80.4 452.2

Key.Net [2] SOSNet [16] 54.1 70.8 78.3 487.9 57.7 74.5 80.9 442.2

Key.Net [2] HyNet [15] 54.1 69.8 77.3 499.9 57.7 74.1 80.5 451.5

ours HardNet [10] 57.1 74.0 81.1 556.2 58.1 72.2 78.1 457.1

ours SOSNet [16] 57.1 74.5 81.6 550.9 58.1 72.4 78.4 449.8

ours HyNet [15] 57.1 73.5 80.6 555.6 58.1 72.3 78.4 452.8

ours GIFT [8] 57.1 75.4 81.1 443.6 58.1 75.4 81.1 388.6

Table 4. Separated results on HPatches illumination/viewpoint variations. We evaluate the Key.Net [2] results using the re-trained model

with the code provided by the authors. Results in bold indicate the best result, and underlined results indicate the second best results.

the boundary regions. Each result consists of three rows.

The first rows show the source image and the estimated

source orientation maps, and the second rows show the tar-

get image and the estimated target orientation maps spa-

tially aligned to the source image with GT homography. In

the third rows, we first compute the difference of orienta-

tion maps, and then compute the correctness by threshold-

ing the error 15◦ using the ground-truth angle. Our correct-

ness maps consistently keep more pixels as correct, imply-

ing that our model produce a more accurate relative orien-

tation of each pixel than SIFT [9] and LF-Net [12].

Figure 3 and 4 show the qualitative results for the

HPatches illumination and viewpoint, respectively. We use

HardNet descriptor [10] for Key.Net [2] and ours and use

their own descriptor for SIFT [9] and LF-Net [12]. We use

mutual nearest matcher for all cases. Our model consis-

tently finds the larger number of correct matches (green)

and the smaller number of incorrect matches (red) com-

pared to the baselines in the viewpoint and illumination ex-

amples.

Figure 5 visualizes the predicted matches on the valida-

tion set of Phototourism in IMC2021 [7]. We draw the in-

liers produced by DEGENSAC [4]. We color the correct

matches from green (0 pixel off) to yellow (5 pixels off),

and the incorrect matches in red (more than 5 pixels off).

Matches with occluding keypoints by changing the camera

pose are drawn in blue. In this unconstrained urban scene,

our model generates a larger number of correct matches

with a smaller number of false positives than the previous

keypoint detectors, SIFT+AN [9,11] and Key.Net [2], in the

same image matching pipeline.
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Figure 2. Visualization of the color-coded orientation maps under synthetic rotations with Gaussian noise. We spatially align the orientation

map of the target image to the source image using a ground-truth homography for a better view. We create a correctness map between the

source orientation map and the aligned orientation map by computing a 15◦ threshold in the third row. The numbers below the target images

indicate the ground-truth angles between the source and target images. We use the HSV color representation to visualize the color map of

the orientations. The color bar located at the top denotes the corresponding color of orientation degree. Two examples with complicated

patterns at the bottom show that our orientation estimator derives more accurate orientations than the existing orientation estimators [9,12].

4



(a) SIFT (b) LF-Net (c) Key.Net (d) ours (e) ours (fltr)

Figure 3. Visualization of the predicted matches in HPatches illumination variations [7]. We detect 300 keypoints for each image and

match them by mutual nearest neighbors. The green and red lines indicate correct and incorrect matches, respectively, by a three-pixel

threshold. Our rotation-invariant keypoints in column (d) derives smaller number of false-positive matches than columns (a), (b), and (c).

Column (e) using the outlier filtering shows that the characteristic orientations effectively filter a set of the correct matches in illumination

variations.
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(a) SIFT (b) LF-Net (c) Key.Net (d) ours (e) ours (fltr)

Figure 4. Visualization of the predicted matches in HPatches viewpoint variations [7]. We draw the correct matches (green) and the

incorrect matches (red) by a three-pixel threshold. Our oriented keypoint detector with HardNet [10] (column (d), (e)) produce a larger

number of matches with a smaller number of false positives in extreme rotation case (row 2) and 3D viewpoint changes (row 1, 3, 4)

compared to the columns (a) SIFT [9], (b) LF-Net [12] and (c) Key.Net+HardNet [2, 10].
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(a) SIFT+AN (b) Key.Net (c) ours (a) SIFT+AN (b) Key.Net (c) ours

Figure 5. Visualization of the predicted matches in IMC2021 [7], with HardNet descriptor [10], DEGENSAC [4] with AdaLAM [3].

Matches above the 5-pixel error threshold are displayed in red, and matches below are color-coded according to errors between 0 (green)

to 5 pixels (yellow). Matches without a depth estimate are displayed in blue. We use 1,024 keypoints to compare with SIFT+AN [9, 11],

Key.Net [2], and ours.
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