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Distribution of the optimal threshold (MS COCO)

Figure A.1. The distribution of the optimal threshold for 8,278
images randomly sampled from MS COCO 2014 train set. This
shows that the optimal threshold per image quite differs from each
other even on MS COCO 2014 train set.

A. Implementation Details
Activation manipulation network. For training AMN, we
used an Adam [2] optimizer and the learning rate of 5e-
6 for updating the backbone parameters and 1e-4 for up-
dating parameters associated with a per-pixel classification
head. Both parameter groups adopt the weight decay of 1e-
4. The batch size is 16, and the total training epoch is 5.
In addition, we adopted label smoothing as a training tech-
nique to subside the noise in initial seed, as discussed in [5].
Note that label smoothing strategy has the hyper-parameter
ϵ that determines the level of smoothing (i.e., the greater ϵ
indicates the stronger effect of label smoothing). In our ex-
periment, we empirically chose ϵ = 0.4 and the same value
was applied in all experimental settings. Specifically, given
a class label lp ∈ {0, 1, 2, 3, ..., N} at pixel p of the refined
seed S, the target label distribution at p is denoted as Sp and
it is rewritten as follows:

Sc
p =

{
1− ϵ, c = lp

ϵ
N−1

, c ̸= lp,
. (1)

For a per-pixel classification loss (PCL), we adopted bal-
anced cross-entropy loss [1] as follows:

*indicates an equal contribution
†Hyunjung Shim is a corresponding author.
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logMu,c,
(2)

M = σ(g(f(x))), (3)

where σ is the softmax function, M is the activation map
from AMN (Fc is the class activation map from the classi-
fier), Cfg is the set of classes that are present in the image
(excluding background) and Cbg is the background class.
|Pc| denotes the number of pixels belonging to class c.
Segmentation network. For the segmentation net-
work, we adopted DeepLab-v2-ResNet101 and followed
the default training settings of AdvCAM [4] for PAS-
CAL VOC 2012. Input images are randomly scaled to
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] and cropped to 321×321
(481 × 481 for MS COCO 2014) for training. We used the
SGD optimizer with the batch size of 10 (20 for MS COCO
2014), the momentum of 0.9, and the weight decay of 5e−4.
The number of training iterations is 30k and the initial learn-
ing rate is 2.5e− 4 with the polynomial learning rate decay
lriter = lrinit(1 − iter

maxiter
)γ , where γ is set to 0.9. We

used balanced cross-entropy loss [1] as in AdvCAM [4].

B. Additional Analysis
Distribution of optimal thresholds on MS COCO 2014.
Figure 1 shows the distribution of optimal threshold in the
PASCAL VOC 2012. Here, we further investigate whether
the same observation holds in MS COCO 2014, which is
a large-scale, popular benchmark dataset for semantic seg-
mentation. To efficiently derive the distribution of optimal
threshold using MS COCO 2014, we randomly sample 10%
of MS COCO 2014 and find the optimal threshold for each
image. Figure A.1 shows that the optimal threshold per im-
age is distributed over a wide range from 0 to 1. This result
confirms that our observation in PASCAL VOC 2012 con-
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AMN AMN AMN
AMN

w/o LC w/ ones w/ label + noise

mIoU 58.2% 58.6% 60.5% 62.1%

Table A.1. Accuracy (mIoU) of pseudo-masks from AMN without
the boundary refinement on PASCAL VOC 2012 train set. The
accuracy depends on the information encoded through the label
conditioning module.
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Distribution of activation values in the foreground

Activation value Activation value

AMN w/o LC AMN

Figure A.2. The distribution of activation values in the foreground
on PASCAL VOC 2012 train set. This shows that LC not only
reduces non-target activations but also increase the foreground ac-
tivations of the target objects.

sistently holds in a different dataset; the global threshold is
not sufficient to generate the optimal pseudo-masks.

Effects of encoding features. In Section 4.3, we encode
label vectors by transforming it into feature vectors for la-
bel conditioning. To differentiate the effect of label vector
from the effect of encoding any vectors, we conduct addi-
tional experiments; 1) encoding a one-vector, 2) encoding
the label vector + a random vector and 3) encoding the la-
bel vector. Table A.1 compares three cases by reporting
the accuracy (mIoU) of pseudo-masks. With a one-vector,
no distinct gain is observed over AMN without LC. This
implies that the encoding operation itself does not make
much difference. In addition, we observe the accuracy gain
when encoding noisy labels (i.e., the ground-truth label vec-
tor summed up with a noise vector). Since this noisy label
also reduces the possible choices, it helps reduce non-target
activation to some extent. As expected, the ground-truth
image-level labels can lead a noticeable gain, achieving the
best accuracy among all.
Effect of label conditioning. Additionally, we observe
the histogram of foreground activation values on PASCAL
VOC 2012 train set. For this empirical study, we focus
on the activation values appearing inside the target objects
using ground-truth segmentation mask. As shown in Fig-
ure A.2, the effects of LC increase the foreground activa-
tions of the target objects–the values within [0.8 1.0] greatly
increase and the values within [0.0 0.2] sufficiently de-
crease. This is coherent with our observation in Figure 4,
where LC reduces the horse activation in the cow image
and then the cow is correctly activated after applying LC.
Overall, we confirm that LC is effective to achieve accurate

and robust segmentation performance.

C. Per-class Performance
In Figure 1(a), we showed that the optimal threshold per

image quite differs from each other. Herein, Figure A.3
shows the distribution of the optimal threshold per image
within the same class on PASCAL VOC 2012 train set.
From these results, we find that the distribution of the opti-
mal threshold is widely distributed in most classes and the
different class has different tendency; a class-wise global
threshold is also largely different from each other.

Figure A.4 shows per-class mIoU of the pseudo-masks
according to thresholds on PASCAL VOC 2012 train set.
Although the different class exhibits different characteris-
tics in optimal thresholds, AMN tends to generate more
accurate and robust pseudo-masks (e.g., the pseudo-mask
accuracy of man increases a lot, but that of sofa is almost
same).

Table A.2 shows the per-class mIoU of the pseudo-mask
results on PASCAL VOC 2012 train set. For comparison,
we report the per-class mIoU of RIB [3]. Since RIB does
not present the per-class mIoU of the pseudo-masks, we
reproduced their results based on the official implementa-
tion of RIB1. Table A.2 and Table A.4 show the per-class
mIoU of the segmentation results on PASCAL VOC 2012
and MS COCO 2014 datasets, respectively. Specifically, for
MS COCO 2014 validation set, we observe the strong gains
in several classes; dining table / airplane are 11.6 / 61.3
with RIB, but 17.2 / 65.5 with ours. These results are con-
sistent with the PASCAL VOC 2012; our method handles
the strong imbalance in activation at the pixel-level (dining
table) and is robust against the threshold choice (airplane).
This demonstrates that AMN is also effective on large-scale
benchmarks.

D. Qualitative Examples
Figure A.5 shows qualitative examples and failure cases

of segmentation results from AMN on PASCAL VOC 2012
validation set and MS COCO 2014 validation set. Our
method effectively covers the full extent of the objects.
Meanwhile, we still have some failure cases: 1) confus-
ing objects (e.g., sofa and chair), 2) co-occurrence problem
(e.g., railroad and train, 3) shape bias (e.g., tv/monitor).

1https://github.com/jbeomlee93/RIB
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Figure A.3. The distribution of the optimal threshold per class on PASCAL VOC 2012 train set. This shows that the distribution of the
optimal threshold per class is quite different.

bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIOU

RIB∗ 88.9 70.3 44.5 74.5 62.3 77.8 83.3 73.9 85.9 40.8 82.4 41.9 79.7 83.4 80.6 69.0 59.5 83.7 63.9 60.8 54.2 69.6
AMN (Ours) 90.2 75.3 40.1 77.4 67.9 73.4 85.6 78.9 80.7 36.5 86.1 62.8 78.7 83.4 81.0 74.4 62.4 89.4 62.8 65.3 63.1 72.2

Table A.2. Per-class accuracy (mIoU) of pseudo-masks evaluated on PASCAL VOC 2012 train set. ∗ denotes the reproduced results based
on the official implementation of RIB [3].
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Figure A.4. Per-class mIoU of pseudo-masks according to thresholds on PASCAL VOC 2012 train set. The results are before boundary
refinement. AMN shows generally more accurate and robust performance than others.

bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIOU

Results on PASCAL VOC 2012 val set:
AdvCAM 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 81.3 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 68.1
RIB 90.3 76.2 33.7 82.5 64.9 73.1 88.4 78.6 88.7 32.3 80.1 37.5 83.6 79.7 75.8 71.8 47.5 84.3 44.6 65.9 54.9 68.3
AMN (Ours) 90.6 79.0 33.5 83.5 60.5 74.9 90.0 81.3 86.6 30.6 80.9 53.8 80.2 79.6 74.6 75.5 54.7 83.5 46.1 63.1 57.5 69.5

Results on PASCAL VOC 2012 test set:
AdvCAM 90.1 81.2 33.6 80.4 52.4 66.6 87.1 80.5 87.2 28.9 80.1 38.5 84.0 83.0 79.5 71.9 47.5 80.8 59.1 65.4 49.7 68.0
RIB 90.4 80.5 32.8 84.9 59.4 69.3 87.2 83.5 88.3 31.1 80.4 44.0 84.4 82.3 80.9 70.7 43.5 84.9 55.9 59.0 47.3 68.6
AMN (Ours) 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.0 86.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.4 59.8 53.1 56.4 69.6

Table A.3. Per-class accuracy (mIoU) of segmentation results evaluated on PASCAL VOC 2012.



Class IRN RIB Ours Class IRN RIB Ours Class IRN RIB Ours Class IRN RIB Ours Class IRN RIB Ours
background 80.5 82.0 82.8 dog 56.2 63.5 67.9 kite 28.8 37.1 43.9 broccoli 52.6 45.4 45.9 cell phone 51.6 54.1 57.7
person 45.9 56.1 53.7 horse 58.1 63.6 65.3 baseball bat 12.6 15.3 16.1 carrot 37.0 34.6 31.3 microwave 42.7 45.2 43.2
bicycle 48.9 52.1 49.3 sheep 64.6 69.1 71.9 baseball glove 7.9 8.1 6.5 hot dog 48.4 49.7 47.0 oven 31.0 35.9 35.5
car 31.3 43.6 38.9 cow 63.8 68.3 70.3 skateboard 27.1 31.8 29.6 pizza 55.9 58.9 57.5 toaster 16.4 17.8 24.3
motorcycle 64.7 67.6 67.1 elephant 79.3 79.5 81.4 surfboard 40.7 29.2 44.6 donut 50.0 53.1 57.3 sink 33.3 33.0 31.4
airplane 62.0 61.3 65.5 bear 74.6 76.7 79.9 tennis racket 49.7 48.9 45.6 cake 38.6 40.7 40.1 refrigerator 40.0 46.0 45.6
bus 60.4 68.5 68.1 zebra 79.7 80.2 82.4 bottle 30.9 33.1 33.0 chair 17.7 20.6 23.6 book 29.9 31.1 29.5
train 51.1 51.3 56.3 giraffe 72.3 74.1 76.5 wine glass 24.3 27.5 31.7 couch 32.6 36.8 36.6 clock 41.3 41.9 47.6
truck 32.2 38.1 38.9 backpack 19.1 18.1 15.5 cup 27.3 27.4 28.8 potted plant 10.5 17.0 19.2 vase 28.4 27.5 30.9
boat 36.7 42.3 41.6 umbrella 57.3 60.1 62.4 fork 16.9 15.9 16.3 bed 33.8 46.2 44.5 scissors 41.2 41.0 39.2
traffic light 48.7 47.8 49.6 handbag 9.0 8.6 7.2 knife 15.6 14.3 16.3 dining table 6.7 11.6 17.2 teddy bear 56.4 62.0 63.9
fire hydrant 74.9 73.4 74.3 tie 24.0 28.6 28.7 spoon 8.4 8.2 8.4 toilet 63.4 63.9 65.4 hair drier 16.2 16.7 21.3
stop sign 76.8 76.3 70.8 suitcase 45.2 49.2 48.6 bowl 17.0 20.7 24.4 tv 35.5 39.7 43.5 toothbrush 16.7 21.0 25.0
parking meter 67.3 68.3 63.2 frisbee 53.8 53.6 56.6 banana 62.4 59.8 61.1 laptop 39.3 48.2 51.8
bench 31.4 39.7 35.0 skis 8.0 9.7 11.4 apple 43.3 48.5 45.9 mouse 27.9 22.4 30.0

mean 41.4 43.8 44.7bird 55.5 57.5 60.0 snowboard 25.5 29.4 30.3 sandwich 37.9 36.9 35.8 remote 41.4 38.0 38.4
cat 68.2 72.4 71.2 sports ball 33.6 38.0 33.9 orange 60.1 62.5 62.9 keyboard 52.9 50.9 48.7

Table A.4. Per-class accuracy (mIoU) of segmentation results evaluated on MS COCO 2014.
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Figure A.5. Qualitative examples of segmentation results on (a) PASCAL VOC 2012 val set and (b) MS COCO 2014 val set.
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