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A. More Analysis
In this section, we further analyze our method with addi-

tional qualitative results. We also provide semantic segmen-
tation results on five different datasets, which consist of four
unseen domain datasets and one seen domain dataset.

A.1. Content Extension Learning

Fig. 1 illustrates extended the wild contents from the
source (i.e., GTAV [8]) to the wild (i.e., ImageNet [4]). The
eight contents are extended from a centered image in GTAV
to the eight ImageNet images, and each color represents the
semantic label of the content in GTAV. After network train-
ing, we used our final ResNet-50 [5] with DeepLabV3+ [1]
model to visualize the pixels in the wild image extended
from each pixel in the source image. Although the source
content was extended to the wild content closest to the styl-
ized source content in the feature space without using any
wild label, the source content was extended to the wild con-
tent with the same semantic information as itself, as shown
in Fig. 1a. These content extensions increase the intra-class
content variability in the latent embedding space and allevi-
ate overfitting to the source contents.

There are various semantic classes in the wild dataset
that are not considered in the source dataset, and we will re-
fer to them as wild-only classes in this supplementary ma-
terial. The source content is sometimes extended to wild-
only class content, such as the thin pole-class pixel being
extended to the thin bird’s leg pixel in Fig. 1b. The pro-
posed content extension learning is a pixel-wise approach.
Therefore, if two pixels have similar features, content ex-
tension to other classes with similar shapes is observed.
This is not limited to human-annotated class labels and en-
courages the network to learn generalized features by re-
ducing the distance between contents with similar semantic
information in the feature space. This may provide clues to
generalization performance improvements for unseen con-
tents. In Fig. 1c, it was observed that some road pixels were
extended to the waterside ground and underwater ground
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pixels. It is expected that content extension to these wild-
only classes will guide the network to correctly predict wet
road and puddle pixels as road classes in rainy scenes. With
content extension learning, WildNet makes reliable predic-
tions in various environments, such as wet vegetation in the
fifth row of Fig. 7 and light-reflected road in the first row
of Fig. 3.

A.2. Wild-Stylized Features

Fig. 2 shows the importance of learning task-specific in-
formation from wild-stylized features. Given the source im-
age and ground truth label (see the first and sixth columns
in Fig. 2), we diversify source data by stylizing the source
feature using the style of the wild feature from the given
wild image (see the second column in Fig. 2). To main-
tain the spatial information of the source feature, we apply
adaptive instance normalization [6] with channel-wise mean
and standard deviation for the source and wild features.
To visualize that the wild-stylized source feature contains
the spatial information of the source feature and the style
of the wild feature, we reconstructed the image from the
wild-stylized feature using the U-Net [9] structure follow-
ing the process of RobustNet [2] reconstructing the input
image from the whitened feature. After training the base-
line model and our model on the semantic segmentation
task, we freeze the weights of the pre-trained model and
add a decoder to learn the image reconstruction. The re-
constructed images from the wild-stylized source features
show that both the baseline model and our model transform
the style while successfully maintaining the spatial informa-
tion of the source features (see the third column in Fig. 2).
Nevertheless, the baseline model fails to make accurate pre-
dictions from wild-stylized source features, as opposed to
making accurate predictions from the original source fea-
tures (see the fifth and fourth columns in Fig. 2).

To address this issue, we train our WildNet with the pro-
posed style extension learning and semantic consistency
regularization methods. The style extension learning en-
ables our model to naturally adapt to various styles by
learning task-specific information from the wild-stylized
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features. Moreover, the semantic consistency regularization
regularizes the model, enabling the capture of consistent
semantic information from the wild-stylized and original
source features. As a result, our model captures general-
ized semantic information from features of various styles
and makes correct predictions on wild-stylized source fea-
tures (see the fifth column in Fig. 2).

A.3. Qualitative Results

In Figs. 3 to 7, we present semantic segmentation results
on four unseen domain validation sets (i.e., Cityscapes [3],
BDD100K [11], Mapillary [7], and SYNTHIA [10]) and
a seen domain validation set (i.e., GTAV [8]). We used
ResNet-50 as the backbone network and trained on GTAV
train set. To show the efficacy of the proposed method, we
additionally present the results of the baseline and Robust-
Net [2]. As shown in Figs. 3 to 6, the baseline model works
poorly on the unseen datasets, and RobustNet also often
fails. In contrast, WildNet can accurately segment the road
and sidewalk (e.g., the top row in Fig. 3, the second row
in Fig. 4, and the second row in Fig. 6) and correctly clas-
sify instances (e.g., terrain in the fifth row of Fig. 3, riders
and bicycles in the top row of Fig. 5, and a car in the fifth
row of Fig. 6). Furthermore, as shown in Fig. 7, our Wild-
Net performed well on the seen dataset even in some chal-
lenging cases, such as night-time (the top row in the figure),
rainy (the fifth row), and backlight (the third row).

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, pages 801–818, 2018. 1

[2] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improving
domain generalization in urban-scene segmentation via in-
stance selective whitening. In CVPR, pages 11580–11590,
2021. 1, 2

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. IEEE, 2009. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1

[6] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
pages 1501–1510, 2017. 1

[7] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic

understanding of street scenes. In ICCV, pages 4990–4999,
2017. 2

[8] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In ECCV, pages 102–118. Springer, 2016. 1, 2

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.
Springer, 2015. 1, 4

[10] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR, pages 3234–3243, 2016. 2

[11] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, pages 2636–2645, 2020. 2

2



pole vegetation sidewalk person building wall car road
(a)

pole wall car vegetation terrain sidewalk motorcycle
(b)

sky vegetation sidewalk wall road
(c)

Figure 1. Visualization of extended wild contents. The center image is sampled from the GTAV dataset while the remaining eight images
are sampled from ImageNet. The contents are extended from the centered GTAV image to the eight ImageNet images, and each color
represents the semantic label of the content in GTAV.

3



Source Img Wild Img Recon. Img from 
Wild-Stylized Feat

Prediction on 
Source Feat

Prediction on 
Wild-Stylized Feat

Ground Truth

Baseline

Ours

Baseline

Ours

Baseline

Ours

Baseline

Ours

Baseline

Ours

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabel

Figure 2. Given the source image and ground truth label, we stylize the source feature using the style of the wild feature from the given
wild image. To visualize the wild-stylized source feature, we reconstructed an image from the wild-stylized feature using U-Net [9]. The
reconstructed image from wild-stylized source feature includes spatial information of the source image and style information of the wild
image. The baseline model fails to make correct predictions from wild-stylized features, as opposed to accurate predictions from source
features. In contrast, the proposed WildNet makes accurate predictions on wild-stylized features by applying style extension learning and
semantic consistency regularization in the training process.
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Unseen domain image Baseline RobustNet Ours (WildNet) Ground truth

Figure 3. Semantic segmentation results on unseen domain images in BDD100K with the models trained on GTAV.

Unseen domain image Baseline RobustNet Ours (WildNet) Ground truth

Figure 4. Semantic segmentation results on unseen domain images in Mapillary with the models trained on GTAV.
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Unseen domain image Baseline RobustNet Ours (WildNet) Ground truth

Figure 5. Semantic segmentation results on unseen domain images in Cityscapes with the models trained on GTAV.

Unseen domain image Baseline RobustNet Ours (WildNet) Ground truth

Figure 6. Semantic segmentation results on unseen domain images in SYNTHIA with the models trained on GTAV.
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Seen domain image Baseline RobustNet Ours (WildNet) Ground truth

Figure 7. Semantic segmentation results on seen domain images in GTAV with the models trained on GTAV.
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