Supplementary Material of:
3D-VField: Adversarial Augmentation of Point Clouds
for Domain Generalization in 3D Object Detection

Alexander Lehner**!2 Stefano Gasperini

Mohammad-Ali Nikouei Mahani?

! Technical University of Munich

A. Supplementary Material

In this supplementary material we include further de-
tails and results. Specifically, Section A.1 describes the
proposed CrashD out-of-domain dataset to a greater ex-
tent, Section A.2 provides additional implementation de-
tails, Sections A.3 and A.4 report more quantitative and
qualitative results on outdoor data, while Section A.5 pro-
vides results on ToF camera data in indoor settings.

A.1. Details on the Proposed Dataset: CrashD

In this section we further describe the proposed dataset:
CrashD. We refer the reader to the dataset webpage to see
examples of the generated accidents and scenes.

A.1.1 Intended Use

This dataset was designed to evaluate the performance of
LiDAR-based 3D object detectors on out-of-domain data.
It is meant to serve as a test benchmark for 3D detectors
trained on KITTI [1], Waymo [&], or similar datasets.

It should be noted, that CrashD is not intended for train-
ing and evaluating an object detector directly, since the gen-
erated LiDAR scenes do not include anything other than
ground and cars. Therefore, training and evaluating on this
dataset would be rather trivial, since the detector could learn
that anything rising from the ground is a car, except for the
relatively small spare parts separated by the accidents (e.g.,
the tire in Figure 1).

Nevertheless, reasonable uses of the proposed CrashD
could include domain adaptation, transfer learning, and do-
main generalization [9], as well as synthetic-to-real trans-

* The authors contributed equally.

© Contact author: Alexander Lehner (alexander.lehner@tum.de).

Work partly sponsored by the German Federal Ministry for Economic
Affairs and Energy (grant 19A19005B), VDA KI-Absicherung project.

*,1,2

Nassir Navab!?

2 BMW Group

Michael Schmidt?
Federico Tombari'*

Alvaro Marcos-Ramiro?
Benjamin Busam'

3 Johns Hopkins University * Google

Figure 6. LiDAR scene setup of CrashD. For each car, a black
arrow indicates its damaged area, which is ensured to be visible
from the sensor viewpoint. Image used with courtesy of BeamNG
GmbH.

fers. Furthermore, it could be used to assess the damage
of a vehicle, and also for uncertainty estimation or similar
methods to detect out-of-distribution samples. Moreover, it
could serve for point cloud reconstruction, or anomaly seg-
mentation approaches comparing damaged and undamaged
cars, since for each crashed vehicle in a scene we provide
its repaired counterpart at the same location.

A.1.2 Driving Simulator

CrashD was generated using a driving simulator developed
by BeamNG [4], which includes a realistic physics engine,
allowing for realistic damages. It offers a Python interface
to setup the scenarios programmatically. Furthermore, it
features a variety of sensors, including a LiDAR with cus-
tomizable settings. Therefore, we equipped the ego vehicle
with a LiDAR that imitates the one used in KITTI [1].

: = e
LI

Figure 7. Comparison of linear damage intensities for normal and rare cars of CrashD. For each type of car, the accidents were created by
the same hitting vehicle, coming from the same angle. It can be seen that the hard crash compromised the structure of the weaker rare car,
while the normal car absorbed the impact differently, leaving the cabin unchanged.

A.1.3 Data Generation and Collection

We generated random accidents with random settings (e.g.,
hitting angle, distance, type of hitting car, type of hit car),
and placed the cars randomly in the LiDAR scene. On each
type of car (i.e., normal and rare), we applied 2 types of
accidents (i.e., linear and t-bone), with 3 intensities each
(i.e., light, moderate and hard). That results in 12 different
categories of damaged cars and their 12 undamaged coun-
terparts (i.e., clean), resulting in 24 categories overall. As
the undamaged cars were placed at the exact same locations
in the LiDAR scenes, they can be used as control group, to
check the performance drop of a 3D detector when intro-
ducing the damages on the same cars.

We generated the accidents as follows. For each of the
12 categories of damages, we randomly selected 5 cars of
the corresponding vehicle type (i.e., normal, rare), and 1
hitting vehicle. The hitting vehicle crashed into each of the
5 cars, getting repaired before each crash. We then repeated
this process at least 64 times for each of the 12 categories,
generating more than 3840 different accidents.

Furthermore, within each category, we used several ran-
dom parameters, resulting in a high amount of possible
damages. The intensity was determined by the distance
from which the hitter starts, so the higher the distance, the
higher the speed at which it will hit the target (i.e., one of
the 5 cars). The effect of different intensities on the two
types of cars for a linear crash can be seen in Figure 7. For
each intensity type, there was a random variable determin-
ing a variation of the distance at which the hitter was placed.
Then, the hitting angle and the side (i.e., front or back for

linear, and left or right for t-bone) were also randomized.
Overall, this covered 360 degrees for each type of car and
intensity.

Each batch of 5 cars, after being hit, was randomly
placed in the LiDAR scene, such that the damaged area was
visible from the sensor viewpoint, as shown in Figure 6.
We considered a crash visible if the sensor was within 35
degrees from the hitting angle. This ensured that a car clas-
sified as damaged is represented by a deformed point cloud.
Moreover, if the damaged part was not visible from the sen-
sor, the car was discarded from the batch.

This was due to a series of reasons, resulting in the lack
of control over the rotation of the damaged car within the
LiDAR scene. In particular, BeamNG setup the simula-
tor [4] such that if a vehicle is rotated programmatically, it
gets automatically repaired. Plus, depending on the dynam-
ics of a crash, a damaged vehicle could rotate following the
impact. So, as we reduced the LiDAR scene to the front
180 degrees, we had to discard some cars to be sure that
they were not classified as damaged if their impacted area
was not visible. To avoid that crashes with a set of hitting
angles could systematically not be placed in the scene, we
randomly rotated the whole accident scenarios.

For each batch of 5 cars, we recorded 10 frames with
the cars with visible damages (between 1 and 5), where we
randomized the distance from the sensor, as well as the an-
gle around it. Moreover, again to avoid that a vehicle is
considered damaged if the affected area is not visible, we
excluded occlusions considering only 25 angles around the
sensor, and preventing two cars from occupying the same
one. This resulted in 750 possible different locations in the

Figure 8. Normal cars of CrashD. These were classified as normal as they resemble the vast majority of cars on the road today in Germany,
USA, and other locations where popular LiDAR datasets, such as KITTI [1] and Waymo [8], have been recorded.

Figure 9. Rare cars of CrashD. These were classified as rare as they complement the normal (i.e., common) cars shown in Figure 8. In
particular, rare ones resemble old cars from various regions, and also include a wedge-shaped sports car. * indicates cars that cannot hit
other vehicles (due to their low speed and weight), but can only be hit by others.

scene. With this setup, a given vehicle might be discarded
in one frame if the angles from which its damage is visible
are occupied by other cars, but might appear in a subsequent
frame if it gets placed beforehand.

Furthermore, we put the objects only in the front, moti-
vated by the front-facing setup of KITTI [1], thereby facil-
itating transfers from KITTI to the proposed CrashD. To-
wards this end, we positioned the vehicles from 10 to 40
meters away from the LiDAR, around its front 180 degrees.
As shown in Figure 6, the scene features a large parking lot,
where no object is located, other than the cars. We selected
a totally empty parking lot (lacking poles, trees, or anything
else), to fully focus on the task at hand, providing test data
for evaluating the generalization capability of a method to
different object shapes. Instead, having distracting elements

(e.g., trees) in the scene, could have led to a different kind
of transfer evaluation (e.g., the ability of recognizing cars
compared to other objects in the scene), which goes beyond
the scope of this dataset. Nevertheless, in the main paper,
as well as in additional results in this supplementary mate-
rial, we also show a transfer from KITTI [1] to Waymo [&],
which features real complex scenes, with trees and other ob-
jects, thereby challenging the 3D detector in a different way
compared to transferring to the proposed CrashD.

A.1.4 Vehicles

The simulator offers a variety of fictional vehicles, which
are shown in Figures 8, 9 and 10. In particular, the 12
normal cars used are shown in Figure 8, resembling the

Figure 10. These vehicles can only hit others and are not detectable objects, as they do not fit the KITTI [1] criteria for being a car, so they

would not get recognized by a model transferred from KITTI.

vast majority of vehicles on the road today in the coun-
tries where common LiDAR datasets were recorded, such
as Germany and USA, for KITTI [!] and Waymo [8] re-
spectively. Figure 9 shows the 7 rare cars used for CrashD,
including older cars from Europe, USA and Asia, as well as
a wedge-shaped sports car. Among older cars, the simulator
features different muscle cars, and also a very small car (at
the top left of Figure 9).

The significant gap between the two types of cars can
be seen by comparing the normal and rare vehicles in Fig-
ures 8 and 9 respectively. Specifically, considering the
normal cars resemble those from KITTI and Waymo, the
shapes of the rare ones are rather different, posing a sub-
stantial challenge for any LiDAR-based 3D object detector
transferring on this dataset from those two others. Anal-
ogously, detecting the cars with the various deformations
resulting from the accidents, which can be seen in Figure 7,
pose a different, but also significant challenge for a detector
trained on KITTI, Waymo, or a similar dataset.

Since the KITTI [1] car annotations do not include vans,
trucks, pickups and busses, we excluded these from the de-
tectable vehicles of CrashD. Nevertheless, these vehicles
were part of the pool of hitting vehicles, and they are shown
in Figure 10. Hitting vehicles also included all the ones
shown in Figure 8, as well as those in Figure 9. How-
ever, we excluded the 2 cars marked with * due to their
relatively low speed and weight, which would have not pro-
vided an accident as intense as those caused by the other
vehicles, thereby altering the data distribution along the in-
tensity types (i.e., light, moderate, hard). In spite of that,
the 2 with * were part of the detectable vehicles.

A.1.5 Dataset Statistics

In total, the proposed CrashD includes 46936 cars, half of
which are damaged and half are not, as the LiDAR scenes
were repeated with and without damages. Normal cars are
23314, while rare ones are 23622, again half of each is dam-
aged. 8124 cars were hit by light accidents, 7453 moderate
and 7891 hard. 11530 were affected by a linear crash, while
11938 by a t-bone. Due to the vehicle placement in the Li-
DAR scene being dependent on the damage visibility, cars
undergoing a linear crash were more likely to be included

from a frontal or rear perspective (including 3/4 views),
while #-bone ones were only included from the sides.

A.2. Additional Implementation Details

Iterative gradient L2 attack For this attack [10] we
minimize our adversarial loss £,4, constraining the defor-
mation m for each point p with [|[m|s < €, with e = 30
cm.

Chamfer attack For the Chamfer attack [3] we used the
Chamfer distance to measure the gap between the original
and perturbed point clouds, which is given by:

1 .
C(XY) = M%ZI&?”“”"Q)

for two sets X and Y. We perturb by minimizing:
Echa - »Cadv +)‘C(p + m7p) (2)

with A set to 0.1 and the amount of deformation constrained
by C(p + m,p) < ¢, with ¢ = 30 cm. It should be noted
that single deformations vectors could lead to perturbations
larger than 30 cm, since what is bounded is the overall
Chamfer distance and not single vectors. This attack led to
only a small amount of perturbed points, but the ones that
moved showed large displacements.

Adversarial removal For the removal attack we fol-
low [12] and remove 10% of the critical points of an object.
These are those input points that if removed, the prediction
changes. We estimate them as those with the highest defor-
mation magnitude from the iterative gradient L.2 attack [10].

Adversarial generation We follow [10] adding 10% of
the objects points. We initialize their location as that of the
critical points (see removal). We then perform the iterative
gradient L2 attack [10] solely on the added points. Thus
shifting them to decrease the detection quality.

Transfer to Waymo To evaluate the transfers to
Waymo [8], we used the standard KITTT evaluation. There-
fore, the LiDAR scene was cut until 70 m in front of the ego
vehicle and 40 m to both sides. We also lowered the whole
point cloud and ground truth bounding boxes by 1.6 m, to
match the KITTI coordinates and ground plane.

A.3. Additional Outdoor Quantitative Results
A.3.1 Transferability of the Vector Fields

PointP. [2] | Second[11] | Part-AZ [6]
Adv.aug. AP ASR | AP ASR | AP ASR
none 771 634 | 792 549 | 79.2 50.5

w/o Lagy | 764 600 | 772 525 | 793 474
[ours] 771 218 | 78.1 183 | 79.3 18.7

Table 4. Moderate AP and ASR | across different models, show-
ing transferability and efficacy of our deformations, on the vali-
dation set of KITTL ASRs on Second and Part-A? are measured
on vector fields trained on the defended PointPillars, to report the
transferability. Adv.aug.: adversarial augmentation; w/o Lqqv:
ours not learned.

Table 4 shows the high transferability of our adversarial
deformations to other 3D object detectors. It can be seen
that perturbations learned on PointPillars [2] are highly ef-
fective also on rather different architectures such as Sec-
ond [11] and Part-A2 [6], maintaining up to 86% ASR
across the models. Table 4 reports also the benefit of our
adversarial augmentation strategy against our deformations.
The perturbed point clouds targeting PointPillars are effec-
tive also to defend the other models.

A.3.2 Robustness against noise

Method -10% -5% 0% +5% +10%
PointP. [2] | 70.51 70.88 77.11 67.36 65.27
[ours] 7145 7175 7713 69.57 65.86

Table 5. KITTI validation moderate AP under various % of re-
moved and added points within the cars bounding boxes.

In Table 5 we report the performance of PointPillars [2]
with and without our adversarial augmentation strategy. For
this set of experiments, at inference time we randomly
added and removed points within the cars bounding boxes
according to the percentages reported in the table. Both
models were the same as in the rest of this work, simply
evaluated with this setup. Thanks to the improved general-
ization provided by our vector fields, the augmented model
was more robust against such noise. Our augmentation
acts as regularization during training, allowing the model
to learn more meaningful features independent of specific
points. This led to a constant gap between 5 and 10% re-
moval. Conversely, randomly adding points is not realistic

from the sensor perspective, since occlusions and its phys-
ical properties are not respected. Due to this reason, both
models suffered more when adding points, than removing.

A.3.3 Detailed transfer to CrashD

Evaluation by categories In Table 6, we show a detailed
evaluation of the various 3D object detectors along the dif-
ferent sub-categories of the proposed CrashD, with various
kinds of damages, different intensities and types of cars.
Our adversarial augmentation strategy outperformed all de-
tectors [2, 6, | 1] across the board by a significant margin,
especially on rare cars. In particular, with high intensity
crashes (hard), the baselines [2, 6, | 1] severely underper-
formed, reducing by half their APs on cars undergoing a
t-bone accident. This can be due to the large point displace-
ment introduced by the impacts, especially with weaker
old cars. Conversely, our 3D-VField, as it was trained on
sensor-aware deformations, was more robust against these
damages, delivering a smaller decrease from the clean cars
to their crash counterparts. Interestingly, rare vehicles were
often more challenging to be detected than normal crash
ones. This can be attributed to an accident typically affect-
ing only a local region of a vehicle, leaving the rest of it
untouched and detectable, compared to a rare design which
has an impact on the whole object point cloud, making it
in general harder to be recognized. Comparing the same
cars with and without damages (crash and clean) shows that
the former are significantly more difficult for every detector,
due to the different resulting shapes. All detectors substan-
tially benefited from our adversarial augmentations, despite
training the vector fields solely against PointPillars [2]. The
values also confirm the superiority of Part-A? [6] over the
other 3D detectors, as seen in Table 1.

Correct and wrong detections on CrashD Table 7 re-
ports a comparison of PointPillars [2] without and with
our adversarial augmentations on CrashD, according to the
number of true positives, false positives and false negatives,
depending on the main categories of the proposed dataset,
at different IoU thresholds. It can be seen that the base-
line [2] had a strong tendency towards over-predicting the
amount of objects in the scene, resulting in a high number
of false positives. In fact, even with a low IoU threshold
of 0.1, over 30% of the boxes predicted by the baseline did
not match any car in the scene. At the same time, it com-
pletely ignored several cars, both damaged and undamaged,
resulting in false negatives. On the other hand, as seen al-
ready in the main paper showing the APs, the proposed 3D-
VField delivered a significantly better detection rate, vastly
reducing the amount of false positives and negatives, de-
spite being based on the same architecture and settings as
the baseline [2].

normal, linear normal, t-bone rare, linear rare, t-bone

— CrashD light mod. hard | light mod. hard | light mod. hard | light mod. hard
. clean baseline [2] 596 644 606 | 655 737 673|335 338 277|375 351 373
: 3D-VF [ours] | 61.8 642 62.0 | 724 767 706 | 39.6 41.1 350 | 49.6 474 47.7
-§ crash baseline [2] 46.5 338 286 | 579 549 402 | 26,7 229 154 | 312 233 154
- 3D-VF [ours] | 543 46.6 40.6 | 653 60.2 50.2 | 334 31.0 215 | 41.7 33.0 221
— clean baseline [11] 67.0 68.6 687 | 76.1 81.1 750 | 39.3 438 375 | 43.7 425 444
-y 3D-VF [ours] | 71.3 754 73.1 | 793 824 77.7 | 409 475 415 | 52.8 49.2 53.0
=]

§ crash baseline [11] 60.1 464 430 | 720 656 533 | 36.1 37.8 288 | 40.1 314 229
%] 3D-VF [ours] | 648 504 449 | 755 694 58.1 | 384 370 29.1 | 493 37.7 254
9 clean baseline [0] 779 827 784 | 86.6 876 852 | 715 727 737 | 783 729 75.1
cit 3D-VF [ours] | 85.6 86.2 860 | 91.3 932 905 | 8.0 81.6 79.8 | 83.7 793 82.2
"‘é crash baseline [0] 71.1 58.6 493 | 797 643 565 | 61.7 555 490 | 67.0 48.6 322
~ 3D-VF [ours] | 81.1 694 633 | 87.3 758 659 | 749 69.1 59.0 | 745 538 36.7

Table 6. Detailed AP comparison of PointPillars [2], Second [1], and Part-A? [6] trained on KITTI [1] and transferred to the proposed
CrashD without any fine-tuning. The evaluation is shown according to the various accident types, and intensities, as well as the kinds of
car. Baseline indicates the standard method, while [ours] shows the impact of our adversarial augmentation strategy.

IoU 0.1 IoU 0.5 ToU 0.7
— CrashD baseline [2] 3D-VF [ours] | baseline [2] 3D-VF [ours] | baseline [2] 3D-VF [ours]
TP 1 11547 11651 11539 11638 8571 8894
normal, clean | FP | 4069 419 4077 432 7045 3176
FN | 110 6 118 19 3086 2763
TP 1 11485 11642 11391 11562 6770 7620
normal, crash | FP | 4550 772 4644 852 9265 4794
FN | 172 15 266 95 4887 4037
TP 1 11761 11805 11747 11790 6091 7528
rare, clean FP | 4700 316 4714 331 10370 4593
FN | 50 6 64 21 5720 4283
TP 1 11724 11804 11566 11680 4688 6011
rare, crash FP | 4742 590 4900 714 11778 6383
FN | 87 7 245 131 7123 5800

Table 7. Impact of our adversarial augmentation on the main categories of the proposed CrashD according to true positives (TP), false
positives (FP) and false negatives (FN) at different IoU thresholds. The models were based on PointPillars [2], trained on KITTI [1] and
transferred to CrashD without any fine-tuning. For reference, the total amount of cars in CrashD is 46936.

A.3.4 Ablation Studies

Amount of deformed objects In Table 8 we report the ef-
fect of augmenting various amounts of objects during train-
ing. Specifically, augmenting more objects in each scene
did not help generalization, as it made difficult to recognize
standard objects. Augmenting all cars means the detector
never learns a normal vehicle, making it rather hard to iden-
tify one at inference time. This can be seen in the AP drop

on KITTI [1] from augmenting half of the cars, to all of
them. Instead, augmenting a single object allowed to retain
the same AP on KITTI, while significantly improving it on
the out-of-domain Waymo [8] and the proposed CrashD.

Grouping strategies In Table 9 we show the impact of
varying amounts of learned vector fields on the ASR, ac-
cording to different distinguishing criteria. We compare the
chosen relative rotation (Section 3.2) with selecting by dis-

KITTI | — W. — CrashD
augm. objects mod. n.,clean r,crash
[ours] 1 obj. 77.13 | 44.61 67.95 30.37

[ours] 50% obj. 76.31 | 39.60 | 53.99 23.63
[ours] 100% obj. | 59.30 | 32.84 | 38.29 14.83

Table 8. Models trained on KITTI, augmented with our adversarial
technique. In each row, the amount of objects augmented at train-
ing time in each scene changes. The chosen number of augmented
objects was 1. mod.: moderate difficulty; —: transfer without any
fine-tuning; W.: Waymo; n.: normal; r.: rare.

tance of the object to the sensor or number of object points.
Relative rotation delivered superior ASR, as it favors the
mutual alignment between neighboring vectors. In contrast,
less vector fields (i.e., 1 and 6) or different criteria resulted
in contrasting vectors, reducing the object deformation.

Aggregation strategies Table 10 shows the effect of dif-
ferent aggregation strategies of vectors when applying the
deformations on the cars of KITTI [1]. It can be seen how
the different amount of groupings (G) and neighboring vec-
tors (k) considered for each point shift affected the adversar-
ial performance of the method (ASR). In general, all defor-
mations in the table were restricted to a maximum of e = 30
cm. The amount of learned vector fields G had an impact
on the ASR of each aggregation strategy. For example, sum
was more effective with 12 G than 1 G, since the vectors of
the 12 fields were better aligned to each other than those of
the single field (Section 4.2), so summing them increased
the deformation magnitude. In fact, the high ASR of sum
with 12 G, was due to larger perturbations.

Grouping | 1-ASR 6-ASR 12-ASR 18-ASR

distance 55.1 56.2 57.3 57.6
nr. points 55.1 56.9 56.0 57.1
rel. rotation 55.1 59.2 634 63.7

Table 9. ASR 7 on the validation set of KITTI for different group-
ing strategies and amount of vector fields.

Grid step size In Table 11 we show the impact of differ-
ent step sizes t of the vector field grid. A larger step size,
results in a coarser grid, which in turn means less vectors
for each field. Intuitively, with more vectors, each would be
more specific for a given point shift, but less generalizable
to others. So, each vector would overfit to its training points.
There is in fact a trade-off between the amount of vectors
and the generalizability of the learned vector field, as seen
in Table 2. That can be seen by the ASR, as the vectors
were learned on the training set of KITTI [1], and applied to

Aggregation
- average distance
k| 1 2 3 2 3 2 3

G=1 |463|444 334|454 520|503 47.0
G=12]596|765 803|619 624634 59.6

sum

Table 10. ASR 1 on the validation set of KITTI [1] for different
aggregation strategies and number of neighbors (k) involved in
each deformation, for both number of groups G = 1 and G = 12.
All configurations are based on PointPillars [2].

its validation set, on which the values are reported. Down-
scaling ¢ from 20 to 5 cm, significantly reduced the ASR.
Conversely, increasing ¢ to 30 cm worsened their general-
ization. Therefore, ¢ = 20 cm was chosen as the grid step
size, offering a good trade-off between the vector specificity
and generalizability, as shown by the ASR.

Step size ‘ Scm 10cm 20cm 30 cm

ASR T ‘ 44.1 463 53.0 49.6

Table 11. ASR 1 on the validation set of KITTI [1] for different
step sizes of the vector field grid. A smaller step size increases the
amount of vectors. All configurations are based on PointPillars [2],
with G = 1.

A.4. Additional Outdoor Qualitative Results

In this section we provide qualitative results of the
learned deformations.

A.4.1 Deformations on KITTI

Figure 11 shows a comparison of the deformations applied
by each method to a set of cars from KITTI [1]. We in-
cluded related works, such as the Chamfer attack [3] and
the iterative gradient L2 approach [10], as well as varia-
tions of the proposed 3D-VField. The Chamfer attack [3]
shifted some points far away while many remained close to
the original location, resulting in an almost perfect ASR.
However, this came at the cost of rather obvious perturba-
tions. The iterative gradient L2 [10] method also achieved
a highly effective ASR (Table 1), but with significantly less
evident deformations. As expected from the high ASR (Ta-
ble 3), our unconstrained (unleashed) method delivered sub-
stantially perturbed objects, even more distorted than those
produced by the Chamfer attack. Applying the ray con-
straint allowed for less perturbed (and less effective ASR),
but more recognizable objects. It can be seen how this con-
straint alone impacts the realism of the deformations, by

unleashed [ours]

original point cloud

Pt

unleashed [ours]

ray constrained [ours]

Chamfer attack

ray constrained [ours]

3D-VField [ours]

R g o S s g

4]

iterative gradient L2

;q

3D-VField [ours]

Figure 11. Comparison of adversarial perturbations on a set of cars from two different point clouds of KITTI [1]. The effect of the Chamfer
attack [3], the iterative gradient L2 [10], and multiple variations of our approach are shown. It can be seen that our 3D-VField preserves

the shape of the original point cloud better than the other approaches.

comparing it to the unleashed version. Moreover, aggregat-
ing neighboring vectors via distance weighting in our full
approach (Section 3.2), further improved the resemblance
of the object to the original point cloud. Although the dif-
ference is subtle, this can be appreciated comparing the rear
wheel, the floor, and the windows of the car in the bottom
half of Figure 11. Thanks to the realism and the smooth al-
terations of the points visible in the figure, training with our
deformations allowed for superior transfer performance to
challenging out-of-domain data (Table 1).

Figure 12 shows the deformations learned by our
method. It can be seen that only local areas are affected,
and the cars preserved their overall shapes with smoothly
deformed parts.

Figure 13 shows the effect of each vector of the adver-

sarial field to the ASR. It can be seen that the most affected
was the front bumper, which can easily be deformed with
an accident. The side of the car is mostly unaffected, prob-

Figure 12. Color-coded deformations in cm learned by the pro-
posed method. The perturbation does not affect every point, its
magnitude is relatively low, and local smoothness is preserved.

o\ 1A
(W05
Lm] l..

Figure 13. Color-coded contribution of each vector to the ASR, in
percentage.

¥

Ml

ol

@
@

ably due to the relatively limited amount of vehicles visible
from the side in KITTI. Interestingly, the model has learned
to avoid the areas without points (e.g., the windows).

A.5. Results on Indoor Data
A.5.1 Experimental setup

In these experiments we used the SUN RGB-D dataset [7],
which posed a completely new set of challenges compared
to the three driving datasets. SUN RGB-D contains indoor
furniture objects captured by depth cameras such as time-
of-flight (ToF), as opposed to driving scenes captured by a
LiDAR. We trained on all 10 classes, but we selected one
at a time for learning our vector fields. In particular, we re-
port on the classes bed, sofa and the highly diverse chair,
as they are the ones where deformations are more plausible
compared to others (e.g., table). In this setting, we apply
our method on a VoteNet [5] architecture. Moreover, we
followed the same setup as for the outdoor experiments, ex-
cept that we reduced the maximum deformation € to 10 cm,
making it more plausible in indoor settings.

A.5.2 Quantitative Results

beds sofas chairs
Advaug. | AP ASR | AP ASR | AP ASR
none 85.6 49.7 | 674 70.6 | 774 709
w/o Lagr | 852 41.1 | 675 654 | 769 62.1
[ours] 86.0 19.7 | 68.5 34.8 | 77.5 39.6

Table 12. AP and ASR | on the validation set of SUN RGB-D [7],
with a VoteNet [5] architecture. Adv.aug.: adversarial augmenta-
tion; w/o L44,: ours not learned.

Table 12 shows the wide applicability of our deformation
and augmentation strategies when applied to point clouds
from depth sensors capturing furniture objects from SUN
RGB-D [7]. Shifting the points with our 3D-VField pro-
duced a strong ASR against the not adversarially augmented
models (none), especially on sofas and chairs. Using the
deformations as augmentation even improved the AP on the
validation set, confirming the benefit of our techniques to-
wards the generalization to unseen data, despite the rather

¢ ‘:{;ﬁ x . ‘:7" ' o =
reference images deformations by 3D-VField [ours]
- -
point displacement incm 0 5 10

Figure 14. Color-coded deformations applied by the proposed 3D-
VField on various objects of the SUN RGB-D dataset [7]. The
color corresponds to the shift of each point in centimeters, limited
to a maximum of 10 cm. Adversarial deformations learned against
VoteNet [5].

different setting, sensor, objects, and architecture. Further-
more, defending with our adversarial augmentations signif-
icantly reduced the ASR, showing the gained robustness
against deformed objects.

A.5.3 Qualitative Results

In Figure 14 we show the deformations learned by our
method against VoteNet [5] on three different categories of
objects from SUN RGB-D [7], namely chairs, sofas, and
beds. It can be seen that the overall shape of each object is
preserved, with minor perturbations applied. In this indoor
setting, such alterations could resemble the presence of pil-
lows, a blanket, or simply a different design of the object.

References

[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354-3361. IEEE,
2012. 1,3,4,6,7,8

[2] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. PointPillars: Fast encoders
for object detection from point clouds. In Proceedings of

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12697-12705, 2019. 5, 6, 7

Daniel Liu, Ronald Yu, and Hao Su. Adversarial shape
perturbations on 3D point clouds. In Proceedings of the
European Conference on Computer Vision, pages 88—104.
Springer, 2020. 4,7, 8

Pascale Maul, Marc Mueller, Fabian Enkler, Eva
Pigova, Thomas Fischer, and Lefteris Stamatogiannakis.
BeamNG.tech technical paper, 2021. 1, 2

Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep Hough voting for 3D object detection in point
clouds. In Proceedings of the IEEE International Conference
on Computer Vision, 2019. 9

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3D object detec-
tion from point cloud with part-aware and part-aggregation
network. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2020. 5, 6

Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
SUN RGB-D: A RGB-D scene understanding benchmark
suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 567-576, 2015. 9
Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2446-2454, 2020. 1, 3,4, 6
Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
and Tao Qin. Generalizing to unseen domains: A sur-
vey on domain generalization. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages
4627-4635,2021. 1

Chong Xiang, Charles R. Qi, and Bo Li. Generating 3D ad-
versarial point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9128-9136, 2019. 4,7, 8

Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Em-
bedded Convolutional Detection. Sensors, 18(10):3337, Oct.
2018. 5,6

Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni,
Jinxian Liu, and Qi Tian. Adversarial attack and defense on
point sets. arXiv preprint arXiv:1902.10899, 2019. 4

	. Supplementary Material
	. Details on the Proposed Dataset: CrashD
	Intended Use
	Driving Simulator
	Data Generation and Collection
	Vehicles
	Dataset Statistics

	. Additional Implementation Details
	. Additional Outdoor Quantitative Results
	Transferability of the Vector Fields
	Robustness against noise
	Detailed transfer to CrashD
	Ablation Studies

	. Additional Outdoor Qualitative Results
	Deformations on KITTI

	. Results on Indoor Data
	Experimental setup
	Quantitative Results
	Qualitative Results

