
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic
Surface Representation via Neural Homeomorphism Supplementary Document

Jiahui Lei
University of Pennsylvania

leijh@seas.upenn.edu

Kostas Daniilidis
University of Pennsylvania
kostas@cis.upenn.edu

In this supplementary document, we first provide ad-
ditional proof for the volume conservation property in
Sec. S.1. Then, we provide more details of our architec-
ture and implementation in Sec. S.2, and more details of the
experiments and quantitative results in Sec. S.3, as well as
more qualitative results and comparisons in Sec. S.5. Addi-
tional discussions and results are in Sec. S.4.

S.1. Volume Conservation
As discussed in Sec.3.3, if the homeomorphism is im-

plemented by NICE [3], using an example split pattern of
[x, y]; [z], each coupling block is:x′

y′

z′

 =

 x
y

z + t(x, y|c)

 . (1)

The determinant of the Jacobian of this mapping is:

|J | =

∣∣∣∣∣∣
1 0 0
0 1 0
∂t
∂x

∂t
∂y 1

∣∣∣∣∣∣ = 1, (2)

which indicates that the mapping preserves the spatial vol-
ume.

S.2. Implementation Details
S.2.1. Deformation Encoder

As introduced in Sec.3.2, the deformation embedding ci
for each frame is output by the deformation encoder and we
demonstrate three encoder choices for two types of inputs
as illustrated in Fig. S1.
PF-encoder The most straightforward approach is to di-
rectly use a standard PointNet [9] to process each input
frame separately. Fig S1-Top shows the diagram of this
per frame (PF) encoder. As discussed in Sec.4.1, when
predicting the deformation embedding for each frame, no
information from other frames can be considered. There-
fore, we use this type of encoder only when the observa-
tion of each frame is relatively complete, as is the case in

the sparse point cloud setup. But, surprisingly, as shown
in Tab.2, the PF encoder achieves the highest performance
since it would potentially result in a higher canonicalization
level and avoid overfitting.

ST-encoder We utilize the ST-PointNet from LPDC [10]
to process the sequence input as shown in Fig. S1-Middle.
First, the 4D coordinates (x, y, z, t) of the input point
clouds are processed by the Temporal-PointNet (marked red
in Fig. S1) with both spatial and temporal pooling in each
residual block and generate temporal features for each input
frame. Second, the 3D coordinates (x, y, z) are processed
by the Spatial PointNet (marked yellow in Fig. S1) just the
same as the PF-encoder and produce the geometry features
for each frame. Finally, the spatial and temporal features
for each frame are fused by Fusion MLPs (marked orange
in Fig. S1). We enhance the original Fusion MLPs from
LPDC [10] by applying pooling across geometry features
from different frames and fusing with an additional global
geometry feature. As mentioned in Sec.5, the continuity
across time of the ci output by the ST-PointNet is not guar-
anteed. Therefore, we apply a Gaussian filter to the defor-
mation embeddings output by the ST-PointNet on the time
dimension when taking the depth observations as input. The
ST encoder is the default configuration of our architecture
since it can simultaneously fuse spatial and temporal infor-
mation, so that it can handle more general inputs like the
partial observations from the depth video.

SET-Encoder When the input is a set of deformed sur-
faces without explicit order, we develop a 2-Phase Encoder
with a code query network to produce the deformation em-
beddings for different deformation states, as illustrated in
Fig. S1-Bottom. In our particular application, the input
set is the set of deformed surfaces of one articulated ob-
ject at different articulation angles. First, we apply a stan-
dard PointNet [9] (PointNet-1, marked yellow in Fig. S1) to
each input state separately and summarize each state as an
embedding zi. Then we regard these embeddings as a set
of points in a higher dimensional space and apply another
PointNet (PointNet-2, marked red in Fig. S1) to get a global

1

Figure S1. Deformation Encoders: Top: per-frame PointNet En-
coder (PF). Middle: ST-PointNet Encoder [10] (ST). Bottom: The
2-Phase PointNet and code query network for set inputs (SET).

deformation embedding for this instance. To finally produce
the deformation embedding for each desired articulation an-
gle θ, we utilize an MLP as the code query network. It gets
the query angle and global deformation embedding as in-
put, and outputs the deformation code corresponding to the
input query angle. Note that the angle θ can be the angle of
the input deformation state (θ0 - θ3 in the figure) or an un-
seen angle (θi in the figure) for interpolation or generation.
To provide a complete model, we also utilize a small pre-
diction head on top of the last feature before global pooling
in PointNet-2 to predict the deformation angle for the input
observed states.

S.2.2. Homeomorphism Architecture

The basic idea of the invertible neural networks we are
using [3, 4] is described in Sec.3.2. We provide more de-
tails of our implementation that helps to increase the ex-
pressivity in this section (Fig. S2). Each coupling block in
our implementation has two subblocks, such that the sec-
ond subblock has the complementary input split with the
first subblock. For example, the first subblock (Coupling
Block 0-A in Fig. S2) changes [z] based on [x, y] condi-
tioning on the embedding, then, the second subblock (Cou-
pling Block 0-B in Fig. S2) will immediately change [x, y]
based on the [z] output from the first subblock conditioning
on the embedding. Additionally, we apply a code projec-
tor (Code MLP BLK0 in Fig. S2) for each block to project
the input deformation embedding to a block-specific con-
dition. Note that the code projector is not shared across
blocks. We also provide an optional global explicit affine
and scaling transformation as in [8] at the beginning of the
network to exclude the modelling of the trivial motion. The
rotation, translation, and scale factors are predicted directly
from the input deformation embedding. To provide a more
stable canonical space, the coordinates output by the neural
homeomorphism are optionally compressed via a sigmoid
function to a bounded cube before sending to the geometry
encoder and decoder.

S.3. Experiment Details
S.3.1. Training and Testing Details

During training, our model is optimized by Adam opti-
mizer with a starting learning rate of 0.0001. The learning
rate has a step decay with a decay rate of 0.3; the epochs
in which the learning rate decay will occur are adjusted to
each dataset depending on the size of the dataset. The model
is trained with the gradient clip. We periodically compute
the validation IoU metric and select the best model based
on the validation performance. During testing, the march-
ing cubes algorithm is conducted based on the library from
O-Flow [7] and O-Net [5]. We refer the reader to [7] for
details of the evaluation metrics. Note that the chamfer dis-
tance and the correspondence error reported in our paper, as
well as [7, 10], are multiplied by 10.

S.3.2. Modeling Human Bodies

We refer the reader to [7, 10] for details of the exper-
iment settings and data generation. Our model is config-
ured with 6 coupling blocks (Sec.S.2.2) in the neural home-
omorphism. During training, the sequence has 17 frames
evenly distributed in t dimension, and we randomly super-
vise the occupancy prediction of 8 frames. Each frame has
512 randomly uniformly sampled query positions. If the
correspondence loss is enabled, we predict the correspond-
ing positions in every other frame of the 100 randomly sam-

Figure S2. Detailed architecture of the invertible neural homeomorphism

pled surface points from the first frame and supervise with
Eq.12 and error order l = 1. The model is trained with loss
mixing weights wR = 1.0 and wC = 1.0 (if use LC).

S.3.3. Modeling Animals

We generate the dataset for Sec.4.2 based on the
DeformingThings4D-Animals [12] (DT4D-A) dataset,
which contains 1227 synthetic animations spreading 38 raw
animal categories (“raw” means that the category is counted
based on the name id prefix in the latest released data
of [12]). Due to the uneven distribution of categories, we re-
serve 21 minor categories and generate data based on 17 raw
animal categories named in DT4D-A as: bear, moose, fox,
deer, puma, rabbit, elk, grizz, dragon, tiger, procy, doggie,
huskydog, raccoon, bunny, bucks and canie. The dataset is
split into training (75%), validation (7.5%), unseen mo-
tion testing (9.4%) and unseen individual testing (9.4%)
split. Since the raw meshes in DT4D-A sometimes have
ill-behaved areas (e.g., self-intersected or overlapped), we
preprocess the meshes to resolve these issues and use the
processed meshes to generate the occupancy samples, as
well as to filter the surface correspondence point samples.
The data format is the same as Sec.4.1 (S.3.2). Since the
shapes in DT4D-A [12] are more complex, we generate the
occupancy field supervision with 50% near-surface samples
and 50% uniform samples. We also generate depth videos.
For each animation, we render the depth video of two ran-
domly posed (poses selected from the semi-sphere) static
cameras and back project the depths to get the single-view
point clouds.

We sample 512 points with noise std 0.001 from the
point cloud trajectories (PCL) or depth back-projected point
clouds (Dep) as input. Similar to Sec. S.3.2, the input se-
quence has a length of 17 and we supervise the reconstruc-
tion of 8 randomly sampled frames. The occupancy super-
vision has 256 near-surface samples and 256 uniform sam-

ples per frame. The correspondence is also supervised as in
Sec. S.3.2. Our model is configured with ST Encoder and 6
NVP coupling blocks (Sec.S.2.2) in the neural homeomor-
phism. We train with loss mixing weights wR = 1.0 and
wC = 8.0. Since animals have some motion, for example,
turning around, which can be decomposed into trivial trans-
formation components, we enable the global explicit rigid
transformation (Sec. S.2.2) at the beginning of the neural
homeomorphism. Additionally, as described in Sec. S.2.1,
we apply a Gaussian filter on the temporal dimension of the
output deformation embeddings from the ST-encoder with
kernel size 5 when taking depth observations as input. The
quantitative performance difference of the Gaussian filter
under the depth input is shown in Tab. S1.

Mehtod Seen individual Unseen individual

IOU CD Corr IOU CD Corr

un-filtered 70.8% 0.095 0.190 53.9% 0.183 0.323
filtered 71.1% 0.094 0.186 55.7% 0.175 0.301

Table S1. Extension of Tab.4: We report the results of the filtered
version in the main paper for the depth inputs. We also provide the
results of the un-filtered version here.

The baseline methods [7, 10] are fully trained under the
same settings and we select their best models based on the
validation metric. We found that the original LPDC [10] im-
plementation will converge to a degenerated reconstruction
(a thin animal shape-like plate) on the animal dataset. The
potential reason is that the MLP which models the cross-
frame deformation outputs the absolute deformed position,
which leads to bad initialization when trained with complex
shape and motion. We make LPDC [10] work on the animal
dataset by changing the MLP’s output to the relative defor-
mation vectors instead of the absolute deformed positions.

Cate Model IoU↑ CD↓ Corr↓ t(s) θ(deg)

Lapt
A-SDF 65.0% 0.076 - 3.15 3.68
LPDC 69.0% 0.077 0.101 0.47 2.99
Ours 76.2% 0.075 0.086 0.83 2.65

Stap
A-SDF 59.6% 0.153 - 2.94 2.97
LPDC 49.8% 0.201 0.313 0.45 2.70
Ours 61.7% 0.128 0.207 0.82 2.95

Wash
A-SDF 42.3% 0.191 - 3.62 2.53
LPDC 46.1% 0.201 0.242 0.62 3.48
Ours 48.3% 0.147 0.180 1.33 2.67

Door
A-SDF 45.0% 0.069 - 3.41 1.49
LPDC 21.5% 0.155 0.241 0.44 1.86
Ours 42.4% 0.064 0.093 1.30 1.95

Oven
A-SDF 49.5% 0.144 - 4.05 3.46
LPDC 51.1% 0.172 0.229 0.68 2.35
Ours 59.2% 0.123 0.164 1.53 2.02

Glas
A-SDF 55.5% 0.138 - 3.16 3.12
LPDC 43.9% 0.233 0.275 0.41 3.25
Ours 55.3% 0.172 0.256 0.81 3.39

Frid
A-SDF 69.1% 0.122 - 3.74 6.42
LPDC 63.4% 0.161 0.210 0.63 4.35
Ours 69.4% 0.118 0.135 1.23 3.64

AVE
A-SDF 55.2% 0.127 - 3.44 3.38
LPDC 49.2% 0.171 0.230 0.53 3.00
Ours 58.9% 0.118 0.160 1.12 2.75

Table S2. Articulated objects per category performance with
sparse point cloud input

S.3.4. Modeling Articulated Objects

We generate the dataset of articulated objects based
on the meshes provided by A-SDF [6] based on
Shape2Motion [11] with 7 distinct articulated categories:
laptop, stapler, door, washing machine, oven, eyeglasses,
and refrigerator. Eyeglasses and refrigerators have two de-
formable angles and the others have one. We utilize the
same training-testing split as [6], but we also split a small
validation set out of the training set for model selection. The
data format is the same as Sec. S.3.3.

Our model is configured with 3 NVP coupling blocks
and uses the SET encoder (Sec. S.2.1). During training,
300 points are randomly sampled with noise std 0.003 from
the sparse point cloud or depths as input. The input has 4
frames at randomly sampled articulation angles. The SET-
encoder takes 4 input observations and produces a global
deformation code, as well as 4 predicted articulation angles
for the input frame (as illustrated in Fig. S1 and Sec. S.2.1).
For completeness, the predicted angles are supervised by
an additional MSE regression loss. Then 8 ground truth
query articulation angles (4 for input frames, 4 for un-
seen angles) query the global deformation code through

Cate Model IoU↑ CD↓ Corr↓ t(s) θ(deg)

Lapt
A-SDF 64.3% 0.077 - 3.56 3.47
LPDC 63.9% 0.089 0.112 0.44 3.13
Ours 71.0% 0.066 0.112 1.01 3.40

Stap
A-SDF 56.7% 0.155 - 3.36 2.86
LPDC 55.0% 0.140 0.217 0.40 3.29
Ours 56.2% 0.139 0.228 0.94 2.98

Wash
A-SDF 45.6% 0.154 - 3.92 9.77
LPDC 46.1% 0.181 0.181 0.77 8.49
Ours 49.2% 0.144 0.170 1.54 8.24

Door
A-SDF 41.4% 0.078 - 3.46 2.10
LPDC 18.1% 0.182 0.253 0.51 2.37
Ours 37.2% 0.076 0.116 1.04 2.01

Oven
A-SDF 50.6% 0.147 - 4.33 7.03
LPDC 47.8% 0.296 0.450 0.73 7.03
Ours 55.6% 0.129 0.168 1.75 6.31

Glas
A-SDF 49.8% 0.157 - 3.05 4.44
LPDC 34.7% 0.297 0.417 0.42 3.66
Ours 50.3% 0.162 0.233 0.91 2.98

Frid
A-SDF 68.8% 0.124 - 3.87 5.77
LPDC 59.4% 0.185 0.249 0.49 5.95
Ours 74.9% 0.093 0.100 1.59 4.46

AVE
A-SDF 53.9% 0.127 - 3.65 5.06
LPDC 46.4% 0.195 0.269 0.54 4.85
Ours 56.4% 0.116 0.161 1.26 4.34

Table S3. Articulated objects per category performance with depth
inputs

the code query network and produce 8 deformation embed-
dings. We supervise all 8 frame reconstructions, and each
frame has 1024 near-surface samples and 1024 uniform
samples. We also supervise the correspondence by predict-
ing the corresponding positions of 256 randomly sampled
surface points from one input frame to all 7 other frames
with the loss error order l = 2. The losses are mixed as:
L = wRLR + wCLC + wθLθ, where Lθ is the angle re-
gression loss, wc = wθ = 1.0 and wC = 8.0 for laptop,
stapler and door categories, and wc = 32.0 for the washing
machine, oven, refrigerator and eyeglasses categories. The
baseline methods [6,10] are fully trained and we select their
best models based on validation metrics.

During inference, the inputs are observations of 4 ran-
domly sampled articulation angles, and the outputs are
mesh reconstructions with the correspondence of 8 frames
(4 for input, 4 for angle generation). The model weights are
trained for each category separately. As mentioned in Tab.4
in the main paper, due to the 8-page limit, we report the
per-category performance here in Tab. S2 for point cloud
inputs and in Tab. S3 for depth inputs. The IoU, chamfer
distance, and correspondence error are reported as averaged
across seen and unseen angles, since we do not observe a

significant difference between them. To exclude the effect
of the articulation angle prediction error, we report the met-
rics for the results based on the ground truth query angle
and separately report the angle prediction error.

Our method guarantees to preserve the topology, but as
mentioned in Sec.5 in the main paper, our method can not
handle the topology changes (Fig. S3) in the current dataset
we are using. We leave for future work to explore how to
selectively preserve or alter the topology.

Figure S3. Topology changes in [6, 11] dataset. Top: unrealistic
topology changes. Bottom: realistic local topology changes.

S.3.5. Ablation Study

In Sec.4.4, we conduct the ablation studies by replacing
the 2-way bijection or removing the canonical geometry en-
coder. We provide more details and analysis here.
Bijection: In addition to the description in Sec.4.4, there
is a remeshing in the ablative model after the per-frame
marching cubes mesh extraction. The goal of this remesh-
ing is to produce a vertex corresponding mesh sequence
(with shared connectivity) since when the canonical map
is not invertible, the deformation/correspondence function
in Eq.3 and Eq.7 can not be established. The remeshing is
achieved by warping the mesh of the first frame to every fu-
ture frame. We project the vertices of the extracted canon-
ical mesh of the first frame in CaDeX to every extracted
canonical mesh of the future frame and find the barycentric
weight. We then use the barycentric weight and the vertices
from the extracted meshes in the future frames to produce
the warped position. Therefore, the significant time con-
suming of this ablative model reported in Tab.5 can be at-
tributed to the per-frame marching cubes and the remeshing,
which are all resulted from the 1-way mapping.
Canonical Geometry Encoder: In this ablative model, the
global shape embedding is directly obtained from the ST-
Encoder’s Fusion MLP (Sec. S.2.1). We observe a decrease
in the reconstruction performance in Tab.5, but a slight im-
provement in the accuracy of the correspondence. One po-
tential reason is that we are optimizing the fixed-capacity
canonical map with respect to multiple gradients from dif-

ferent sources. In our full model, the canonical map is opti-
mized to form a canonical shape that is easier for the canoni-
cal geometry encoder to summarize and better for the recon-
struction accuracy and correspondence prediction. When
we remove the canonical geometry encoder, more capac-
ity of the canonical map can be allocated to optimize the
correspondence prediction. However, the canonical geom-
etry encoder is still worth doing because it brings a larger
reconstruction improvement and is more helpful when deal-
ing with partial observations.

S.4. Additional Discussion and Results
S.4.1. Interpreting Canonical Shapes

As shown in the qualitative results, the learned canonical
shapes look different from the ones in the input space (the
final reconstructions). For example, the canonical shape of
the human body in Fig.4(left) amplifies the tissue fluctua-
tions and has more stable poses across different pose se-
quences, helping the shape encoder-decoder to better ex-
press the local details. Such behavior is caused by our end-
to-end framework and training supervision. The canonical
shape and canonical maps can be jointly optimized during
training so that the capacity of both the deformation module
and the shape module is balanced.

On the other hand, the learned canonical shape is not
oversimplified (e.g, a sphere), which might be a practical
problem for learning the canonical template shape [13] from
shape collections [2]. This might be caused by several facts:
Our method is to model temporal sequences, where frames
have closer correlation to each other than the discrete shape
instances in the shape collection [2]. Additionally, our neu-
ral homeomorphism is initialized as a near-identity map-
ping, and hence the learning of the canonical shape starts
from the mean shape. Finally, the end-to-end framework is
unlikely to converge to the situation that the geometry mod-
ule models oversimplified canonical shapes, but leaves most
shape components expressed by the deformation module.

S.4.2. Efficiency of the NVP and NICE

Training time (ms) per recon-frame Testing Mesh Extracing Time (s)

Total Forward Backward&Optim Total First Frame MC Rest Frames

O-Flow [7] 74.4 5.02 69.4 0.680 0.322 0.357
CaDeX 5.46 1.11 4.35 1.125 0.439 0.686

Table S4. Efficiency comparisons, all experiments are on the same
gpu device and the gpu utility is near 100%.

We provide an additional discussion regarding the ef-
ficiency of the Neural ODE [7] deformation and our
NVP/NICE deformation in Tab. S4. The advantage of our
method over ODE is in the training phase. The forward
and backward passes of our method are as simple as a stan-
dard MLP architecture, but the ODEs need to densely query

the whole trajectory to compute the gradient as well as to
forward the integration. However, since O-Flow has a sim-
pler velocity MLP and can do sequential prediction for ev-
ery time step via one forward of the ODE during testing, it
achieves slightly faster testing speed.

S.4.3. Other types of deformation

Figure S4. Other types of deformation: the left is the visualization
of the learned canonical shape and the right are the input sparse
point cloud and the output reconstruction sequence.

Beyond the deformation of human bodies, animals, and
articulated objects, whose motion might be dominated by
the global articulation, we also apply our method to fully
non-rigid motions. We build a synthetic dataset from the
sofa category of ShapeNet [2] similar to the warping cars
dataset used in Tab.2 [7] in O-Flow paper (O-Flow’s is not
public yet). The sofas are randomly warped through a ran-
dom space deformation field. Fig S4 shows the qualita-
tive results and the evaluation metrics are as follows: IoU
73.2%, CD 0.077, Corr 0.099.

S.5. More Qualitative Results
Human Bodies Fig. S5 shows the qualitative comparison
on D-FAUST [1] human bodies.
Animals Fig. S6 shows the qualitative comparison on
DeformingThings4D-Animals [12] dataset with sparse
point cloud inputs, and Fig. S7 shows the depth inputs.
Articulated Objects Fig. S8 shows the comparison on
Shape2Motion [6, 11] articulated objects with sparse point
cloud inputs, and Fig. S9 is for the depth inputs.

References
[1] Federica Bogo, Javier Romero, Gerard Pons-Moll, and

Michael J. Black. Dynamic FAUST: Registering human bod-
ies in motion. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), July 2017. 6

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5, 6

[3] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014. 1, 2

[4] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 2

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019. 2

[6] Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille,
Nuno Vasconcelos, and Xiaolong Wang. A-sdf: Learning
disentangled signed distance functions for articulated shape
representation. arXiv preprint arXiv:2104.07645, 2021. 4,
5, 6, 10

[7] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5379–
5389, 2019. 2, 3, 5, 6

[8] Despoina Paschalidou, Angelos Katharopoulos, Andreas
Geiger, and Sanja Fidler. Neural parts: Learning expres-
sive 3d shape abstractions with invertible neural networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3204–3215, 2021. 2

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1

[10] Jiapeng Tang, Dan Xu, Kui Jia, and Lei Zhang. Learning par-
allel dense correspondence from spatio-temporal descriptors
for efficient and robust 4d reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6022–6031, 2021. 1, 2, 3, 4

[11] Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qin-
ping Zhao, and Kai Xu. Shape2motion: Joint analysis of
motion parts and attributes from 3d shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8876–8884, 2019. 4, 5, 6

[12] Takafumi Taketomi Yang Li, Hikari Takehara, Bo Zheng,
and Matthias Nießner. 4dcomplete: Non-rigid motion es-
timation beyond the observable surface. arXiv preprint
arXiv:2105.01905, 2021. 3, 6

[13] Zerong Zheng, Tao Yu, Qionghai Dai, and Yebin Liu. Deep
implicit templates for 3d shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1429–1439, 2021. 5

Figure S5. Modelling human bodies: each column corresponds to a time frame of the reconstruction or a visualization viewpoint of the
learned canonical shape.

Figure S6. Modelling animals with sparse point cloud inputs: each column corresponds to a time frame of the reconstruction or a visual-
ization viewpoint of the learned canonical shape.

Figure S7. Modelling animals with depth inputs: each column corresponds to a time frame of the reconstruction or a visualization viewpoint
of the learned canonical shape.

Figure S8. Modelling articulated objects with sparse point cloud inputs: the left-top four point clouds are the inputs and the right-top are
four visualization viewpoints of the learned canonical shape. The left four columns correspond to the reconstruction of the seen articulation
angles and the right four correspond to the unseen angles. A-SDF [6] is not colored since it can not produce the correspondence.

Figure S9. Modelling articulated objects with depth inputs: the left-top four partial point clouds are the inputs and the right-top are four
visualization viewpoints of the learned canonical shape. The left four columns correspond to the reconstruction of the seen articulation
angles and the right four correspond to the unseen angles.

