
Appendix for:
Towards Multimodal Depth Estimation from Light Fields

Titus Leistner, Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, Carsten Rother
Visual Learning Lab, Heidelberg University

Method Parameters
EPI-Net 4612166
UPR 4613300
ESE 4613300
DPP 4778872

Table A.1. Number of trainable parameters for different models

A. Implementation Details

The architecture of all models in this paper is based on
EPI-Net [19]. We input four light field view stacks: hori-
zontal, vertical and two diagonals. Each stack is processed
by a separate input stream network. The horizontal and
vertical stacks behave similar when one is rotated by 90◦.
Therefore we effectively share the weights between those
two input streams by applying this rotation to the vertical in-
put and revert it before concatenation. Analogously, we also
share weights between the two diagonal input streams. Sub-
sequently, we concatenate the inferred features, and feed
them to an output stream. All models and streams share
the same basic building block which consists of two convo-
lutions with a kernel size of 2 × 2. We use an alternating
padding of one and zero and a stride of one to maintain the
image dimensions. In addition, we apply a Rectified Linear
Unit (ReLU) non-linearity after the first convolution and a
Batch Normalization (BN) as well as a ReLU layer after the
second convolution. Table A.1 shows the total number of
trainable parameters for each model. A small difference be-
tween the four methods is caused by the variable number
of output channels. In the following sections, we describe
details, specific to one of the architectures.

All four methods, share the same backbone network. The
only differences are the variable number of output channels
and one additional output ReLU-layer for DPP. Table A.2
shows the detailed architecture for one input stream. This
subnetwork infers features from one light field stack con-
taining nine images with three color channels, thus a total
number of 9 × 3 = 27 input channels. Each input stream
consists of three basic blocks. Because the architecture is

Layer Output Size
LF Stack B × 27×H ×W
2× 2 Conv B × 70×H ×W
ReLU
2× 2 Conv B × 70×H ×W
BatchNorm
ReLU

Repeat Block (2×)

Table A.2. Input stream of EPI-Net, UPR, ESE and DPP

Layer Output Size
Concatenate B × 280×H ×W
2× 2 Conv B × 280×H ×W
ReLU
2× 2 Conv B × 280×H ×W
BatchNorm
ReLU

Repeat Block (6×)
2× 2 Conv B × Cout ×H ×W
ReLU
2× 2 Conv B × Cout ×H ×W
(ReLU)

Table A.3. Output stream of EPI-Net, UPR, ESE and DPP

based on [19], we chose the same number of 70 output chan-
nels. The features of all input channels are concatenated to
a total number of 4 ∗ 70 = 280 feature channels and fed to
the output stream which is illustrated in Tab. A.3.

The feed-forward output stream consists of a total num-
ber of eight blocks. Both convolutional layers for each
block, except the last, output 280 channels. The last block
outputs Cout channels, depending on the specific model. In
case of our baseline, Cout = 1, because it directly predicts
the disparity for each pixel. For Laplacian distribution pre-
diction, we added a second output channel to also predict
b, thus Cout = 2 for UPR and ESE. The number of dis-

crete disparity “classes”, predicted by DPP, can be chosen
arbitrarily. Specifically, we chose Cout = 108, thus 108
“classes”, motivated by the common BadPix007 metric.

A.1. Sub-Pixel EPI-Shift

Our ESE model utilizes the EPI-Shift transformation, in-
troduced by [13]. This shear transformation allows us to
apply a disparity offset ∆y to any light field x. We index
the 4D light field in horizontal views U , vertical views V ,
image width W and image height H as xuvst (u = 1 . . . U ,
v = 1 . . . V , s = 1 . . .W , t = 1 . . . H). In contrast to the
original method which only applies integer pixel shifts, we
also need sub-pixel shifts to ensure the detection of modes
that are closer than one pixel. To achieve this, we apply
a linear interpolation. Thus the original formulation for a
horizontal EPI

shift(xuvst,∆y) = xuv(s−∆y·u)t (A.1)

can be generalized to continuous ∆y using linear interpola-
tion

shift(xuvst,∆y) = αxuv(⌊s−∆y·u⌋)t+(1−α)xuv(⌈s−∆y·u⌉)t
(A.2)

with an interpolation factor α = frac(∆y · u). This can
be adapted trivially to vertical EPIs. For diagonal EPIs, the
horizontal and vertical shift is applied successively.

B. Bayesian Interpretation of Opacity
From a Bayesian perspective, the probability p(yij) of

each possible ground truth disparity value for a pixel quan-
tifies the “degree of belief” in this value. For a synthetic
dataset, in absence of a real ground truth measurement de-
vice whose characteristics we can analyze, any definition
for p(yij) is valid as long as it leads to stable training and
a model that reproduces the different modes with their cor-
responding probabilities faithfully at test time (as we verify
in Sec. 4).

However, there are still some choices which are more
sensible or well founded than others. In terms of the opacity
ηj , it should be evident to chose

ηj = 0 =⇒ p(yij) = 0 (B.1)
ηj = 1 =⇒ p(yij) = 1, (B.2)

meaning that if an object is not visible at all in a pixel, its
disparity should not be considered, and vice versa, if an ob-
ject is the only one visible in a pixel, its disparity should be
the only valid answer. In between these two points, we ar-
gue for the simplest choice of p(yij) = ηj . We note that if a
setup requires a different definition of p(yij) (e.g. re-weight

yi1 yi2

Figure B.1. View of a single idealized square pixel (synthetic case)
containing an edge. The opacity values η1,2 of the rendered pixel
correspond to the fraction of the area that the two objects take up
within it, and therefore to the probability with which the disparity
would be measured at a random point in the pixel.

to increase the dominant mode, up-weight the foreground
mode, etc.), the posterior can easily be re-weighted at test
time, without retraining the model. This is only possible
with methods such as ours that produce a full posterior.

Despite various valid choices of defining p(yij), we do
argue that our definition makes practical sense: the opacity
corresponds to the fraction of the area that an object takes up
within in a pixel before integration or rendering. It is there-
fore equal to the probability that the depth of that object
would be observed when measuring at a random subpixel
position. In other words, if we were to take many physical
depth measurements within a pixel, the relative occurrence
of each measured depth value yij (therefore arguably the
probability p(yij)), would be the same as the opacity ηj .
This is illustrated further in Fig. B.1. While this applies ex-
actly to our synthetically rendered dataset, some additional
effects such as point spread functions and non-uniform pixel
integration functions would apply for real recorded light
fields. These effects might make the derivation more com-
plex, but do not change the general idea.

C. Dataset Generation
In the following, we describe the generation of our mul-

timodal light field depth dataset: To maximize occlusions,
we generate relatively deep indoor room scenes with a high

number of objects. From a set of 750 3D assets, mainly fur-
niture and accessories, we randomly choose 48 objects per
scene and place them in a non-colliding way on the floor.
In addition, random materials with a random opacity are
chosen to increase the number of semi-transparent surfaces.
To maximize the diversity, we also randomly choose one of
750 tileable textures for the walls, ceiling and floor. We then
render the created scene by separating it into 128 slices of
equal depth, as we observed that this leads to different ob-
jects falling into different slices almost always. We then
render the color, alpha transparency and depth of each pixel
for each slice. Alpha compositing follows the “over opera-
tor”

C0 =
C1α1 + C2α2(1− α1)

α0
(C.1)

with C0 being the resulting color from color C1 rendered
over color C2. The new alpha opacity of color C0 is

α0 = α1 + α2(1− α1). (C.2)

The contribution p(yj) = ηj of the color Cj at disparity yj
is therefore calculated as

p(yj) = ηj = αj (1− αj−1 (1− αj−2 (1− . . . α0))) .
(C.3)

Lastly, we save all depths for each pixel that are not fully
occluded by slices in front. Note that, apart from the multi-
modal depth ground truth, our synthetic light fields are sim-
ilar to real light field recordings. The multi-layer color in-
formation that real light field cameras could not record is
not used as an input to our methods.

D. Additional Experiments
In this section, we first compare our methods to “Image-

Based Rendering for Scenes with Reflections” (IBR) [20]
and “What Sparse Light Field Coding Reveals about Scene
Structure” (SLFC) [11]. Secondly, we present visualiza-
tions of exemplary depth posteriors predicted by UPR and
DPP. Thirdly, we evaluate our work on the commonly used
HCI 4D Light Field Dataset [9] and show additional quali-
tative results.

D.1. Comparison to IBR [20] and SLFC [11]

We additionally compared our methods to two multi-
modal depth estimation approaches [20] [11]. These are, to
the best of our knowledge, the only previous methods which
are able to estimate multiple depth modes. For “Image-
Based Rendering for Scenes with Reflections” [20] we im-
plemented the normalized cross-correlation framework for
our own dataset, as no source code was publicly avail-
able. The method computes the pairwise normalized cross-
correlation in a small window (3px × 3px) and utilizes it
to form a cost volume. In a second step, up to two dispar-
ity planes are extracted from the volume using a modified

semi-global matching algorithm. We interpret the per-pixel
normalized cross-correlations as our disparity posterior dis-
tributions. To achieve better results, we first subtract the
per-pixel minimum cross-correlation and then normalize the
distribution.

We also compared our methods to “What Sparse Light
Field Coding Reveals about Scene Structure” (SLFC) [11].
The method uses a dictionary of small EPI-Patches. Each
atom in this dictionary corresponds to a unique dispar-
ity. On small EPI windows around each pixel, the Lasso-
Optimizer is used to infer the coefficients for each atom. A
large coefficient for an atom means that the disparity which
corresponds to this atom was observed at this pixel. The
vector of coefficients can therefore also be interpreted as
a discrete disparity posterior distribution, similarly to DPP.
The authors were able to provide us with only a part of the
code which we used to create the dictionaries for our multi-
modal validation dataset. We used the Lasso optimizer from
the Python framework “scikit-learn” and set α = 0.01 as
recommended by the paper authors. Finally, we optimized
the posterior distribution for each pixel.

We compared both methods to our four deep learning
based models. Please note, that due to the enormous run-
time of SLFC (even with our parallel implementation on
128 CPU cores), we run it on a cropped down (0.5 × 0.5)
version of our validation dataset. For a fair comparison, we
ran all methods trained on the multimodal posterior distri-
bution with loss functions LMM

x on the same cropped down
scenes and chose a the same number of 108 disparity steps
for all methods.

Table D.1 shows the results of our comparison. We no-
tice that IBR and SLFC produce more wrong classifications
in non-textured and therefore uncertain areas which leads
to more overall noise. We argue that this is due to the lo-
cal per-pixel optimization. In contrast, our neural networks
benefit from a larger receptive field and are therefore ca-
pable to deliver smooth results, even within relatively large
non-textured areas (compare Fig. D.1). This effect causes
an overall worse performance of IBR and SLFC. To com-
pute the unimodal metrics, we chose the discrete disparity
with the highest posterior probability for each pixel. Both,
the MSE and BadPix score confirm our observations. Note
that IBR and SLFC both perform better than our baseline
model in terms of multimodal posterior prediction. This
clearly shows that the methods are indeed able to correctly
predict multiple disparity modes. However, the predicted
posterior distributions also suffer from poor performance in
uncertain regions. Additionally, due to each pixel being op-
timized separately, the runtime of SLFC is several orders of
magnitudes higher. One 256px×256px scene took approx-
imately 18 minutes to compute in parallel on a dual CPU
machine with 128 cores, while DPP runs in approximately
one second on a single GPU.

Method Unimodal Metrics KL Divergence AuSE ↓ Time ↓
MSE ↓ BadPix ↓ Unimodal ↓ Multimodal ↓ Overall ↓ (in sec)

BASE (multi) 0.435 0.274 4.807 8.081 6.078 - 0.557
UPR (multi) 0.480 0.285 2.028 3.551 2.448 0.115 0.578
ESE (multi) 1.204 0.245 4.330 3.769 4.226 0.182 4.502
DPP (multi) 0.608 0.239 1.786 3.193 2.136 0.288 1.068
IBR [20] 1.436 0.365 3.835 3.436 3.843 0.617 11.263
SLFC [11] 3.449 0.660 3.694 3.908 3.715 0.324 1054.231

Table D.1. Comparison to IBR [20] and SLFC [11], from left to right: Mean Squared Error and the common BadPix007 score (percentage
of pixels with |yi − ŷi| > 0.07), Kullback-Leibler divergence on unimodal, multimodal and all pixels, Area under Sparsification Error
(AuSE), runtime of one forward pass. Our methods were trained using the multimodal loss LMM

x . Lower is better

(a) Center view (b) Ground Truth (c) SLFC [11] (d) IBR [20] (e) DPP

Figure D.1. Qualitative results of IBR [20] and SLFC [11], compared to DPP on one of our multimodal validation scenes: We chose
the disparity which corresponds to the strongest coefficient for each pixel. Compared to our deep learning based methods, IBR [20] and
SLFC [11] tend to wrong classifications in non-textured areas which causes noise. This also has a negative impact on both methods
posterior prediction performance.

D.2. Visualization of Disparity Posterior Distributions

To give some examples of predicted posterior distributions, we visualized estimations of UPR and DPP on our multimodal
validation dataset. Similar to our evaluations, we discretized the ground truth disparity posterior using the same number of
bins. We chose certain pixels from three validation scenes that contain one, two and three disparity modes respectively. Note
that DPP manages to detect both modes in Fig. D.2b, but outputs a high uncertainty due to the similar colors of the foreground
and background object. In Fig. D.2c, two of the tree modes collapsed into one. UPR always picked up one present mode with
a high uncertainty. Please note that our dataset randomly adds transparency to object materials. This causes some objects
that would be opaque in real life to become transparent.

discretized disparity y

p
(y
|x
)

UPR

DPP

GT

(a) Validation scene 4: pixel (red cross) contains a single disparity mode

discretized disparity y

p
(y
|x
)

UPR

DPP

GT

(b) Validation scene 3: pixel (red cross) contains two disparity modes

discretized disparity y

p
(y
|x
)

UPR

DPP

GT

(c) Validation scene 9: pixel (red cross) contains three disparity modes

Figure D.2. Visualization of disparity posterior distributions for one pixel (red cross) estimated by UPR (orange) and DPP (green) and
discrete ground truth posterior (blue). Note that DPP is able to estimate up to two modes reliably, while UPR only picks up a single mode.

D.3. Evaluation on HCI 4D Light Field Dataset [9]

We also evaluated our methods on the commonly used HCI 4D Light Field Dataset [9]. Like previous methods [19], we
used the 16 “additional” scenes as our training dataset and the four “training” scenes for validation. As this dataset only
contains a single ground truth depth, we used the unimodal loss functions Lx. All other training parameters remain the same
as mentioned in Sec. 4. Note, that we only trained on the HCI dataset for this particular experiment. The methods used in all
other experiments were trained solely on our novel multimodal dataset.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

FRACTION OF REMOVED PIXELS

B
A

D
P

IX
(N

O
R

M
A

L
IZ

E
D

)

UPR
Oracle

(a) Sparsification curve

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

FRACTION OF REMOVED PIXELS
S

PA
R

S
IF

.−
O

R
A

C
L

E UPR
ESE
DPP

(b) Sparsification Error for all methods

Figure D.3. Unimodal uncertainty quantification on HCI 4D Light Field Dataset: Sparsification results of analyzed methods with
respect to the disparity BadPix007.

Method Unimodal Metrics AuSE ↓ Time ↓
MSE ↓ BadPix ↓ (in sec)

BASE 0.011 0.065 - 0.480
UPR 0.012 0.056 0.060 0.481
ESE 0.163 0.088 0.091 14.863
DPP 0.018 0.044 0.110 0.783

Table D.2. Evaluation on HCI dataset [9], from left to right: Mean Squared Error and the common BadPix007 score (percentage of pixels
with |yi − ŷi| > 0.07), Area under Sparsification Error (AuSE), runtime of one forward pass. Lower is better

Figure D.3 and Table D.2 show our experimental results, which are overall very consistent with the experiments on
our randomly generated multimodal dataset. DPP performs best with respect to the amount of accurately predicted pixels
(BadPix) but is overconfident which is clearly visible in the sparsification error. In contrast, UPR and ESE deliver a better
sparsification performance. Qualitative results are shown in Fig. D.5 to Fig. D.8.

ymin ymax(a) Disparity

0 σ2
max(b) Uncertainty

Figure D.4. Color maps used for results. Disparity and uncertainty maps are normalized to enhance visibility

(a) Light field (b) Dataset ground truth

(c) BASE (d) UPR (e) ESE (f) DPP

Figure D.5. Results of the four posterior prediction methods ((c) - (f)) for ‘boxes’ scene. Top: output disparity (most likely mode). Center:
per-pixel BadPix metric (a pixel i is red if |yi − ŷi| > 0.07). Bottom: per-pixel uncertainty σ2 (non-existent for baseline method)

(a) Light field (b) Dataset ground truth

(c) BASE (d) UPR (e) ESE (f) DPP

Figure D.6. Results of the four posterior prediction methods ((c) - (f)) for ‘cotton’ scene. Top: output disparity (most likely mode). Center:
per-pixel BadPix metric (a pixel i is red if |yi − ŷi| > 0.07). Bottom: per-pixel uncertainty σ2 (non-existent for baseline method)

(a) Light field (b) Dataset ground truth

(c) BASE (d) UPR (e) ESE (f) DPP

Figure D.7. Results of the four posterior prediction methods ((c) - (f)) for ‘dino’ scene. Top: output disparity (most likely mode). Center:
per-pixel BadPix metric (a pixel i is red if |yi − ŷi| > 0.07). Bottom: per-pixel uncertainty σ2 (non-existent for baseline method)

(a) Light field (b) Dataset ground truth

(c) BASE (d) UPR (e) ESE (f) DPP

Figure D.8. Results of the four posterior prediction methods ((c) - (f)) for ‘sideboard’ scene. Top: output disparity (most likely mode).
Center: per-pixel BadPix metric (a pixel i is red if |yi − ŷi| > 0.07). Bottom: per-pixel uncertainty σ2 (non-existent for baseline method)

