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1. Introduction
In this material, we present more results of our AirNet

including the evaluation on contrastive loss, generalization
ability and additional results on qualitative comparisons.

2. Ablation Study on Contrastive Loss
In this section, we conduct experiments to demonstrate

the effectiveness of the contrastive loss. Table 1 reports the
experiments on the BSD68 dataset, where “AirNet w/o CL”
denotes the variant by removing contrastive loss from our
method. “AirNet w PCM” denotes the variant by using the
restored images and ground truth as positive, and the re-
stored image and the input degraded image as negative.

Table 1. Ablation study on contrastive loss and pair construction
methods.

Noise Level σ = 15 σ = 25 σ = 50

AirNet w/o CL 33.99/0.9340 31.34/0.8909 28.07/0.7982
AirNet w PCM 34.04/0.9353 31.39/0.8919 28.15/0.8030

AirNet 34.14/0.9355 31.49/0.8928 28.23/0.8058

3. Evaluation on Generalization Ability
In this section, we conduct experiments to demonstrate

the generalization ability of AirNet by evaluating the pre-
trained AirNet on unseen degradation types or levels. More
specifically, we synthesize the noisy images on BSD68 with
noise level σ ∈ {10, 55}. Table 2 shows that AirNet could
perform well on unseen degradation levels.

4. Qualitative Results on Single Degradation
In this section, we show the qualitative results on three

separated image restoration tasks, i.e., denoising, deraining,
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and dehazing.
Denoise: Figure 1 reports the qualitative results on

BSD68 [5] comparing with five denoising methods under
the one-by-one setting. From the results, one could find that
AirNet removes most of the noise from the pictures and pre-
serves more details comparing with the baselines.

Derain: From Figure 2, it could be seen that AirNet
outperforms all baselines in qualitative comparisons. For
examples, although LPNet [4] could successfully removes
most of rain streaks from the pictures, it fails to remove the
rain streaks around the people. In contrast, our AirNet could
be immune of these issues.

Dehaze: As reported in Figure 3, AirNet also shows su-
periority in image dehazing. In short, it could successfully
recover the clean image from the degraded one, whereas the
baselines suffer from color distortions around buildings.

5. Qualitative Results on Multiple Degrada-
tions

In this section, we conduct experiments to verify the ef-
fectiveness of the proposed method on multiple degrada-
tions, i.e., the all-in-one setting. From Figure 4, one could
find out that AirNet shows superiority in qualitative com-
parisons.

6. Qualitative Results on Spatially Variant
Degradation

In this section, we show the qualitative results on spa-
tially variant degradations. As shown in Figure 5, AirNet
demonstrates better visualization results. To be specific, al-
though CBM3D [1], IRCNN [9], FFDNet [10], and BRD-
Net could remove most of noise from the pictures, but they
suffer from the over-smoothing and details lossing. In addi-
tion, DnCNN [8] and DL [3] could keep details in the pic-
ture, but they cannot remove all noise. In contrast, AirNet
could remove the noise while keeping the image details.
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Table 2. Quantitative results of image deraining on the BSD68 dataset. The best results are shown in boldface.

Sigma Metrics BRDNet [6] LPNet [4] FDGAN [2] MPRNet [7] DL [3] AirNet

10 PSNR 34.05 28.52 31.03 33.55 33.14 35.60
SSIM 0.9273 0.8294 0.9314 0.9517 0.8850 0.9476

55 PSNR 25.56 20.44 25.85 27.13 26.08 27.17
SSIM 0.6056 0.5024 0.7606 0.7613 0.6887 0.7689

Figure 1. Comparisons of the SOTA denoise methods on the BSD68 database. Some areas are highlighted in colored rectangles and
zooming-in is recommended for a better comparison.
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Figure 2. Comparisons of the SOTA derain methods on the Rain100L database. Some areas are highlighted in colored rectangles and
zooming-in is recommended for a better comparison.
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Figure 3. Comparisons of the SOTA dehaze methods on the SOTS database. Some areas are highlighted in colored rectangles and
zooming-in is recommended for a better comparison.

Figure 4. Comparisons of the SOTA methods on multiple degradations. Some areas are highlighted in colored rectangles and zooming-in
is recommended for a better comparison.
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Figure 5. Comparisons of the baselines on BSD68 database with spatially variant degradations. Some areas are highlighted in colored
rectangles and zooming-in is recommended for a better comparison.
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