
A. Additional Reconstruction Samples
Due to page limit, we only include the reconstruction re-

sults under the Soteria [44] defense in our main paper (Fig-
ure 5) for additional visualization samples on the ImageNet
dataset. Here we present the full results under all 4 con-
sidered defenses (i.e., additive noise [44, 56] with σ = 0.1,
gradient clipping [14, 48] with S = 4, gradient spasifica-
tion [56] with a pruning rate of 90%, and Soteria [44] with
a pruning rate of 80%) in Figure 10. We observe that our
method is able to reconstruct high-quality images from gra-
dients in all these considered cases regardless of the type of
defense.
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Figure 10. Reconstruction results under various defenses on the
ImageNet dataset: (first row) original images and (the rest of rows)
their reconstructions by GGL under various defenses.

B. Implementation Details
Optimization Configuration. We use the following

configuration for the explored optimizers: (1) Adam: ini-
tial learning rate lr = 0.1, β1 = 0.9, β2 = 0.999. On the
CelebA dataset, we use a step learning rate decay at step
937, 1562, and 2189, by a factor of γ = 0.1. On the Ima-
geNet dataset, the learning rate is linearly warmed-up from
0 during the first 125 iterations and gradually reduced to 0 in
the last 625 iterations using cosine decay; (2) BO: We use
the TurBO-1 algorithm [10] with 256 initial points, batch
size = 10, lower bound = −2, upper bound = 2, and auto-
matic relevance determination (ARD) kernel for the Gaus-

sian process; and (3) CMA-ES: we use random initializa-
tion with batch size = 50. We set λ = 0.1 for experiments
on the CelebA dataset. On the ImageNet dataset, for algo-
rithms that do not innately support bound constraints, we
apply the tanh function to achieve the bound.

GAN Configuration. For the CelebA dataset, we train
a DCGAN [40] with a latent dimension of 128 with its de-
tailed structure presented in Figure 11. Specifically, we use
the Wasserstein distance with the loss weight set to 10 for
the gradient penalty [17]. The GAN model is trained for
100 epochs using Adam optimizer with a learning rate of
0.0001 and a batch size of 64. For the ImageNet dataset, we
use a pre-trained BigGAN [6] with a latent dimension of
128 and output image size of 256× 256. The output image
is further rescaled to 224× 224 for computing the FL task.

Type Kernel Stride Output
FC 8192

BN1D 8192
DeConv2D 2× 2 2× 2 256

BN2D 256
DeConv2D 2× 2 2× 2 128

BN2D 128
DeConv2D 2× 2 2× 2 3

(a) Generator

Type Kernel Stride Output
Conv2D 3× 3 2× 2 128
Conv2D 3× 3 2× 2 256
Conv2D 3× 3 2× 2 512

FC 1

(b) Discriminator

Figure 11. GAN structure for the CelebA dataset.
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Figure 12. Comparison of image reconstructed by our method and
GAN inversion.



C. Loss Landscape Analysis

Comparison with GAN Inversion. In our attack, we
consider the private image to be unknown and the adver-
sary attempts to reconstruct the image from the shared gra-
dient information using a pre-trained GAN. However, such
reconstruction is constrained by the generator’s fitting abil-
ity. GAN inversion technique which inverts a given image
to the GAN’s latent space can serve as a means for testing
the upper bound of the image quality reconstructed from
GAN. To evaluate, we compare the reconstructed image
from gradients using our method and the inverted image us-
ing GAN inversion technique [25]. To compare the infor-
mation provided by gradient information with the informa-
tion provided by the original image, we further visualize the
gradient matching loss and the LPIPS loss in the GAN la-
tent space. Specifically, we plot the loss functions by inter-
polating between the latent vectors found by the proposed
GGL (z1) and GAN inversion (z2): z(α) = (1−α)z1+αz2.
From the results presented in Figure 12 we observe that (1)
the latent vector found by our method does yield the low-
est gradient matching loss on this line; (2) compared to the
gradient information, the information provided by the orig-
inal image can better guide the optimization process in the
GAN latent space: the latent vector found by GAN inver-
sion produces a better image quality (lower LPIPS) than the
solution found by our method; and (3) the latent vector with
the lowest gradient match loss doesn’t result in the best im-
age quality/similarity (measured by LPIPS).

Different Defenses. We next analyze how each de-
fense mechanism affects the loss landscape. We extend
the visualization to a 2D surface by adding a second ran-
dom direction vector η (normalized according to z2 − z1):
z(α, β) = z1 + α(z2 − z1) + βη. Figure 13 shows the vi-
sualized loss surface under different defense settings. We
can see that additive noise and gradient sparsification do
not have much impact on the geometric landscape of the
gradient matching loss, whereas gradient clipping and So-
teria [44] clearly deform the gradient matching loss surface,
rendering it hard for the adversary to find a good reconstruc-
tion under such defenses. However, by applying the adap-
tive transformation at the adversary’s side, such deforma-
tion can be greatly mitigated and thereby enables the adver-
sary to reconstruct high-quality images even with the pres-
ence of these defenses.

D. Larger Batch Sizes or Multiple Local Steps

Recovering high-resolution batch data with multiple lo-
cal steps remains a major challenge in this line of research.
Most existing studies [13, 56] only work on small images
(32×32px) for batch size > 1. Currently, the only study that
accounts for local steps > 1 is IG [13], but it only works on
a single ImageNet image. The only study that can work on
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Figure 13. Visualization of observed loss landscapes under various
defense settings. The bottom 3 rows compare the loss surface with
(right) and without (left) applying adaptive transformation at the
adversary’s side.

batched full-size ImageNet images (224×224px) is GI [51],
which supports up to 48 images with local step = 1. How-
ever, it can only reveal limited information from partial im-
ages of the batch, and it assumes that the BatchNorm (BN)
statistics (mean and std.) of the target batch is jointly pro-
vided with the gradients and only works for specially pre-
trained large ResNet-50 model (larger model provides more
gradient information).

Differently, we seek to investigate the privacy leakage
under various defense strategies. We show that even with
batch size = 1 and local step size = 1, existing methods
still failed to reconstruct the input under defenses, while our
method can reveal a good amount of visual information.

To investigate the generalizability of GGL, we con-
ducted additional experiments on batched ImageNet images
(224×224px) and with multiple local steps, with the results
presented in Figure 14 and Figure 15, respectively. We can
see that GGL can still restore a decent amount of visual in-
formation under these settings. The proposed GGL can be



further strengthened with additional prior information (e.g.,
BN statistics).

Figure 14. Image reconstruction with batch size = 4: (1st row)
original images, (2nd row) reconstructions by GGL w/o defense,
and (3rd row) reconstructions by GGL w/ Soteria [44] defense.

Figure 15. Reconstruction by GGL with multiple local steps.

Figure 16. Reconstruction of in-the-wild images: (1st row) images
from Google Images and (2nd row) their reconstructions by GGL.

E. Recovering In-the-wild Data
We target the practical scenario where the attacker can

utilize all public-accessible data as prior information to
launch the attack. Thus we chose to use CelebA and Im-
ageNet for evaluation as they are all Internet-based datasets
and are easy to access as an attacker. We also used the dis-
joint dataset so that the images used for testing haven’t been
used for GAN training. To investigate the performance of
GGL under the scenario where the testing image is not from
the GAN training distribution, we conducted additional ex-
periments to recover in-the-wild images (i.e., arbitrary im-
ages from the search results in Google Images with appro-
priate cropping/resizing). From the results in Figure 16, we
can see that GGL can still reveal a reasonable amount of vi-
sual information even if the testing images are not from the
GAN training distribution.


