
Automated Progressive Learning for Efficient Training of Vision Transformers
Supplementary Material

Changlin Li1,2,3 Bohan Zhuang3† Guangrun Wang4 Xiaodan Liang5 Xiaojun Chang2 Yi Yang6

1Baidu Research 2ReLER, AAII, University of Technology Sydney
3Monash University 4University of Oxford 5Sun Yat-sen University 6Zhejiang University
changlinli.ai@gmail.com, bohan.zhuang@monash.edu, wanggrun@gmail.com,

xdliang328@gmail.com, xiaojun.chang@uts.edu.au, yangyics@zju.edu.cn

A. Definition of Compared Growth Operators
Given a smaller network ψs and a larger network ψℓ, a

growth operator ζ maps the parameters of the smaller one
ωs to the parameters of the larger one ωℓ by: ωℓ = ζ(ωs).
Let ωi

ℓ denotes the parameters of the i-th layer in ψℓ
1. We

consider several ζ in depth dimension that maps ωs to layer
i of ψℓ by: ωi

ℓ = ζ(ωs, i).
RandInit. RandInit copies the original layers in ψs and
random initialize the newly added layers:

ζRandInit(ωs, i) =

{
ωi

s, i ≤ ls

RandInit, i > ls.
(1)

Stacking. Stacking duplicates the original layers and di-
rectly stacks the duplicated ones on top of them:

ζStacking(ωs, i) = ω
i mod ls
s . (2)

Interpolation. Interpolation interpolates new layers of ψℓ

in between original ones and copy the weights from their
nearest neighbor in ψs:

ζInterpolation(ωs, i) = ω
⌊i/ls⌋
s . (3)

B. Implementation Details
Our ImageNet training settings follow closely to the

original training settings of DeiT [10] and VOLO [13], re-
spectively. We use the AdamW optimizer [9] with an ini-
tial learning rate of 1e-3, a total batch size of 1024 and
a weight decay rate of 5e-2 for both architectures. The
learning rate decays following a cosine schedule with 20
epochs warm-up for VOLO models and 5 epochs warm-
up for DeiT models. For both architectures, we use ex-
ponential moving average with best momentum factor in
{0.998, 0.9986, 0.999, 0.9996}.

†Corresponding author.
1In our default setting, i begins from the layer near the classifier.

For DeiT training, we use RandAugment [2] with 9 mag-
nitude and 0.5 magnitude std., mixup [15] with 0.8 proba-
bility, cutmix [14] with 1.0 probability, random erasing [16]
with 0.25 probability, stochastic depth [7] with 0.1 probabil-
ity and repeated augmentation [6].

For VOLO training, we use RandAugment [2], random
erasing [16], stochastic depth [7], token labeling with Mix-
Token [8], with magnitude of RandAugment, probability of
random erasing and stochastic depth adjusted by Adaptive
Regularization.
Adaptive Regularization. The detailed settings of Adap-
tive Regularization for VOLO progressive training is shown
in Tab. I. These hyper-parameters are set heuristically re-
garding the model size. They perform fairly well in our
experiments, but could still be sub-optimal.

Regularization D0 D1
min max min max

RandAugment [2] 4.5 9 4.5 9
Random Erasing [16] 0 0.25 0.0625 0.25
Stoch. Depth [7] 0 0.1 0.1 0.2

Table I. Adaptive Regularization Settings (magnitude of Ran-
dAugment [2], probability of Random Erasing [16] and Stochastic
Depth [7]) for progressive training of VOLO models.

Growth Space Λk in Each Stage. We find emprically
that the elastic supernet converges faster when the number
of sub-networks are smaller. Thus, restricting the growth
space Λk in each stage could help the convergence of the
supernet. In practice, we make the restriction that |Λk| ≤ 9.
Specifically, in the first stage, we use the largest, the small-
est and the medium candidates of n and l in Ω to construct
Λ1, which makes it possible to route to the whole network
and perform regular training if the growing “ticket” (suit-
able sub-network) does not exist. In each of the following
stages, we include the next 3 candidates of l and the next
1 candidate of n, forming a growth space with 2 × 4 = 8
candidates.

Model
Training
scheme

FLOPs
(avg. per step)

Speedup
Runtime

(GPU Hours)
Speedup

Top-1
(%)

Top-1@288
(%)

100 epochs

DeiT-S [10]
Original 4.6G - 71 - 74.1 74.6
Prog 2.4G +91.6% 46 +53.6% 72.6 73.2
AutoProg 2.8G +62.0% 50 +40.7% 74.4 74.9

VOLO-D1 [13]

Original 6.8G - 150 - 82.6 83.0
Prog 3.7G +84.7% 93 +60.9% 81.7 82.1
AutoProg 0.5Ω 3.3G +104.2% 91 +65.6% 82.8 83.2
AutoProg 0.4Ω 2.9G +132.2% 81 +85.1% 82.7 83.1

VOLO-D2 [13]
Original 14.1G - 277 - 83.6 84.1
Prog 7.5G +87.7% 180 +54.4% 82.9 83.3
AutoProg 8.3G +68.7% 191 +45.3% 83.8 84.2

300 epochs

DeiT-Tiny [10]
Original 1.2G - 144 - 72.2 72.9
AutoProg 0.7G +82.1% 95 +51.2% 72.4 73.0

DeiT-S [10]
Original 4.6G - 213 - 79.8 80.1
AutoProg 2.8G +62.0% 150 +42.0% 79.8 80.1

VOLO-D1 [13]
Original 6.8G - 487 - 84.2 84.4
AutoProg 4.0G +68.9% 327 +48.9% 84.3 84.6

VOLO-D2 [13]
Original 14.1G - 863 - 85.2 85.1
AutoProg 8.8G +60.7% 605 +42.7% 85.2 85.2

Table II. Detailed results of efficient training on ImageNet. Best results are marked with Bold; our method or default settings are highlighted
in purple . Top-1@288 denotes Top-1 Accuracy when directly testing on 288×288 input size, without finetuning. Runtime is rounded to
integer.

C. Additional Results
Theoretical Speedup. In Tab. II, we calculate the aver-
age FLOPs per step of different learning schemes. Auto-
Prog consistently achieves more than 60% speedup on the-
oretical computation. Remarkably, VOLO-D1 trained for
100 epochs with AutoProg 0.4Ω achieves 132.2% theoreti-
cal acceleration. The gap between theoretical and practical
speedup indicates large potential of AutoProg. We leave the
further improvement of practical speedup to future works;
for example, AutoProg can be further accelerated by ad-
justing the batch size to fill up the GPU memory during
progressive learning.
Comparison with Progressively Stacking. Progressively
Stacking [3] (ProgStack) is a popular progressive learning
method in NLP to accelerate BERT pretraining. It begins
from 1

4 of original layers, then copies and stacks the layers
twice during training. Originally, it has three training stages
with number of steps following a ratio 5:7:28. In Com-
poundGrow [4], this baseline is implemented as three stages
with 3:4:3 step ratio. Our implementation follows closer
to the original paper, using a ratio of 1:2:5. The results
are shown in Tab. III. ProgStack achieves relatively small
speedup with performance drop (0.4%). Our MoGrow re-
duces this performance gap to 0.1%. AutoProg achieves
74.1% more speedup and 0.5% accuracy improvement over
the ProgStack baseline.

Training scheme
Runtime

(GPU hours)
Speedup Top-1 (%)

Baseline 150.2 - 82.6
ProgStack [3] 135.3 +11.0% 82.2
+ MoGrow 136.0 +10.4% 82.5
Prog 93.3 +60.9% 81.7
AutoProg 0.4Ω 81.1 +85.1% 82.7

Table III. Comparison with progressively stacking.

Combine with AMP. Automatic mixed precision (AMP)
[52] is a successful and mature low-bit precision efficient
training method. We conduct experiments to prove that
the speed-up achieved by AutoProg is orthogonal to that of
AMP. As shown in Tab. IV, the relative speed-up achieved
by AutoProg with or without AMP is comparable (+85.1%
vs. +87.5%), proving the orthogonal speed-up.

Method Speed-up Top-1 Acc. (%)

Original (w/o AMP) - 82.6
AMP +74.0% 82.6
AutoProg +87.5% 82.7

AMP + AutoProg
+222.1% 82.7

(+85.1% over AMP)

Table IV. Speed-up of AutoProg is orthogonal to AMP [52].

Number of stages. We perform experiments to analyze the
impact of the number of stages on AutoProg with different
initial scaling ratios (0.5 and 0.4). As shown in Tab. V, Au-
toProg is not very sensitive to stage number settings. Fewer
than 4 yields more speed-up, but could damage the perfor-
mance. In general, the default 4 stages setting performs
the best. When scaling the stage number to 50, there are
only supernet training phases (2 epochs per stage) during
the whole 100 epochs training, causing severe performance
degradation.

Ratio Num. Stages Orig. 3 4 5 50

0.5 Speed-up - +69.1% +65.6% +63.6% +48.5%
Top-1 Acc. (%) 82.6 82.6 82.8 82.8 81.7

0.4 Speed-up - +90.8% +85.1% +80.4% -
Top-1 Acc. (%) 82.6 82.4 82.7 82.7 -

Table V. Ablation analysis on number of stages.

Effect of Progressive Learning in AutoProg. AutoProg is
comprised by its two main components, “Auto” and “Prog”.
The effectiveness of “Auto” is already studied by compar-
ing with Prog in the main text. Here, we study the effec-
tiveness of progressive learning in AutoProg by training an
elastic supernet baseline for 100 epochs without progressive
growing to compare with AutoProg. Specifically, we treat
VOLO-D1 as an Elastic Supernet, and train it by randomly
sampling one of its sub-networks in each step, same to the
search stage in AutoProg. The results are shown in Tab. VI.
In previous works that uses elastic supernet [1, 11, 12], the
supernet usually requires more training iterations to reach a
comparable performance to a single model. As expected,
the supernet performance is lower than the original net-
work given the same training epochs. Specifically, Auto-
Prog improves over elastic supernet baseline by 1.1% Top-
1 accuracy, with 17.1% higher training speedup, reaching
the performance of the original model with the same train-
ing epochs but much faster, which proves the superiority of
progressive learning.

Method Speedup Top-1 Acc. (%)

Original - 82.6
Supernet 48.5% 81.7
AutoProg 65.6% 82.8

Table VI. Ablation analysis of progressive learning in AutoProg
with VOLO-D1.

Analyse of Searched Growth Schedule. Two typical
growth schedules searched by AutoProg are shown in
Tab. VII. AutoProg clearly prefers smaller token number
than smaller layer number. Nevertheless, selecting a small
layer number in the first stage is still a good choice, as both
of the two schemes use reduced layers in the first stage.

Stage k 1 2 3 4

VOLO-D1 100e 0.4Ω l 0.4 1 1 1
n 0.4 0.6 0.6 1

VOLO-D2 300e l 0.83 1 1 1
n 0.5 0.67 0.83 1

Table VII. Searched growth schedules for VOLO-D1 0.4Ω, 100
epochs, and VOLO-D2, 300 epochs.

Retraining with Searched Growth Schedule. To eval-
uate the searched growth schedule, we perform retraining
from scratch with VOLO-D1, using the schedule searched
by AutoProg 0.4Ω. As shown in Tab. VIII, retraining takes
slightly longer time (-0.6% speedup) because the speed
of searched optimal sub-networks could be slightly slower
than the average speed of sub-networks in the elastic su-
pernet. Retraining reaches the same final accuracy, proving
that the searched growth schedule can be used separately.

Training scheme
Runtime

(GPU hours) Speedup Top-1 (%)

Baseline 150.2 - 82.6
AutoProg 0.4Ω 81.1 +85.1% 82.7
Retrain 81.4 +84.5% 82.7

Table VIII. Retraining results with searched growth schedule on
VOLO-D1, 100 epochs.

Extend to CNNs. To explore the effect of our policy on
CNNs, we conduct experiments with ResNet50 [5], and
found that the policy searched on ViTs generalizes very well
on CNNs (see Tab. IX). These results imply that AutoProg
opens an interesting direction (automated progressive learn-
ing) to develop more general learning methods for a wide
computer vision field.

Method Speed-up Top-1 Acc. (%)

Original - 77.3
AutoProg +56.9% 77.3

Table IX. AutoProg with ResNet50 [5] on ImageNet (100 epochs).

References
[1] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin

Ling. Autoformer: Searching transformers for visual recog-
nition. In ICCV, 2021. 3

[2] Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data aug-
mentation with a reduced search space. In CVPRW, 2020.
1

[3] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang,
and Tie-Yan Liu. Efficient training of bert by progressively
stacking. In ICML, 2019. 2

[4] Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen,
and Jiawei Han. On the transformer growth for progressive
bert training. In NAACL, 2021. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

[6] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In CVPR, 2020.
1

[7] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
ECCV, 2016. 1

[8] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi,
Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens matter:
Token labeling for training better vision transformers. arXiv
preprint arXiv:2104.10858, 2021. 1

[9] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1

[10] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 1, 2

[11] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, T. Huang, Xiaodan
Song, and Quoc V. Le. Bignas: Scaling up neural architec-
ture search with big single-stage models. In ECCV, 2020.
3

[12] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In ICLR, 2019.
3

[13] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and
Shuicheng Yan. VOLO: Vision outlooker for visual recogni-
tion. arXiv preprint arXiv:2106.13112, 2021. 1, 2

[14] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Young Joon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 1

[15] Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization. In
ICLR, 2018. 1

[16] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, 2020.
1

