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Appendix
The appendix is organized as follows. Sec. A gives a de-

tailed derivation of the optimization of the object-centered
model and the joint framework. Sec. B presents addi-
tional test results in our synthetic multi-view dataset and
shows more intermediate results. Sec. C shows more de-
tails and examples of the proposed BCOT benchmark and
evaluates state-of-the-art monocular 3D tracking methods
comprehensively. Finally, Sec. D compares BCOT with
other 3D object tracking datasets in detail.

A. Optimization
In this section, we first derive the Jacobian matrix in de-

tail based on the object-centered model, based on which we
solve the pose for the proposed joint optimization frame-
work.

A.1. Optimization of the Object-centered Model

As shown in the manuscript, we translate the camera-
centered model to the object-centered model and then ex-
pand it, i.e.:
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where A = t11Xo + t12Yo + t13Zo + t14, B = t21Xo +
t22Yo+ t23Zo+ t24, and C = t31Xo+ t32Yo+ t33Zo+ t34.

The object-centered model and the camera-centered
model are obtained from the camera projection model,
which is irrelevant to the feature extraction of the tracking
method. Therefore, mapping the camera-centered model to
the object-centered model is universal and can be replaced
in all 3D tracking methods.

The Jacobian matrix under Oo can be formulated as:
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ϕo and ρo are the rotation and translation components of
ξo, and R and t are the corresponding rotation matrix and
translation vector of T .

A.2. Optimization of the Joint Framework

For the i-th camera, we can calculate the Jacobian matrix
of the object-centered model as described above, i.e.:
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We use the Gauss-Newton method for optimization, where
the second-order Taylor approximation of the energy func-
tion E is formulated as:
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In Eq. 21, the second-order derivative is dropped when cal-
culating the Hessian matrix. Then the update step in the
object-centered model can be formulated as:
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Finally, we map ∆ξo to each camera coordinate frame, i.e.:

∆T i =ciT oexp(∆̂ξo)(
ciT o)

−1. (23)

B. Additional Multi-view Tracking Results on
the Synthetic Data

The synthetic dataset contains three modes of multi-view
data, including: 1) Object moves freely with fixed cameras,
2) Object rotates only with fixed cameras and 3) Cameras
move freely.

In the manuscript, we give the results of binocular track-
ing and multi-view tracking results in mode 1. In this sec-
tion, we first provide the rest results in mode1 and mode 2

Figure 1. Spatial distribution of cameras in first two modes. The
red cameras and the object constitute a plane, while the green
cameras are outside the plane, constituting the cone with the other
two cameras on the plane.

and then give some intermediate results to show the effec-
tiveness of our method. Fig. 1 shows the spatial distribution
of cameras. The red cameras constitute the plane-type, and
the green cameras with the other two cameras on the plane
constitute the cone-type.

B.1. Trinocular Tracking Result in Mode 1

We select several groups of cameras for the trinocular
tracking evaluation in mode 1. The selection principle is
that the included angle between the first camera and the
second camera is equal to the included angle between the
second camera and the third camera. Based on this, we se-
lect 8 sets of data where the first four are the object and the
cameras constitute a plane, and the last four are the object
and the cameras constitute a cone. The camera angles are
5◦, 10◦, 30◦, and 45◦, respectively. Table 1 shows the eval-
uation results.

Overall, the rotation and translation errors decrease with
the camera angle increase in both plane and cone cameras.
We can find more interesting consequences by combining
Table 3 in the manuscript and Table 1, that is, 1) when the
object and the cameras on one plane, the precision depends
on the two cameras with the largest included angle, and
adding cameras between them will reduce the overall pre-
cision. 2) The precision of the cone cameras is worse than
that of the plane cameras if the included angle is the same.

The reason for this phenomenon is that the cameras with
a large included angle can eliminate uncertainty, but adding
a camera between them actually introduces the new uncer-
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Camera Angle Mono. 5◦ plane 10◦ plane 30◦ plane 45◦ plane 5◦ cone 10◦ cone 30◦ cone 45◦ cone

Camera Index C-0 C-0/C-1/C2 C-0/C-2/C3 C-0/C-4/C6 C-0/C-5/C-7 C-0/C-1/C9 C-0/C-2/C10 C-0/C-4/C11 C-0/C-5/C-12
r(◦) 1.62 1.25 1.21 0.93 0.68 1.28 1.24 0.96 0.77
tx(mm) 4.36 2.51 1.37 0.48 0.36 2.97 1.77 0.52 0.40
ty(mm) 2.39 1.37 0.71 0.27 0.27 1.68 1.02 0.45 0.38
tz(mm) 22.09 12.70 6.58 1.06 0.45 15.26 9.04 1.74 0.85
Lost Number 21 10 5 0 0 14 9 0 0

Table 1. Trinocular tracking evaluation on Object moves freely with fixed cameras mode.

Camera Angle Mono. 30◦ 45◦ 60◦ 90◦ 30◦ 45◦

Camera Index C-0 C-0/C-1 C-0/C-2 C-0/C-3 C-0/C-4 C-0/C-5 C-0/C-6
r(◦) 1.41 1.15 1.05 1.06 0.79 0.93 0.87
tx(mm) 0.39 0.64 0.55 0.38 0.36 0.22 0.31
ty(mm) 0.37 0.13 0.13 0.12 0.13 0.45 0.42
tz(mm) 15.07 2.48 1.37 0.61 0.36 1.92 1.39
Lost Number 9 0 0 0 0 0 0

Table 2. Binocular tracking evaluation on Object rotates only with
fixed cameras mode.

Camera Angle Mono. 30◦ plane 45◦ plane 30◦ cone 45◦ cone

Camera Index C-0 C-0/C-1/C-3 C-0/C-2/C-4 C-0/C-1/C-5 C-0/C-2/C-6
r(◦) 1.41 1.12 0.86 0.93 0.85
tx(mm) 0.39 0.39 0.39 0.34 0.31
ty(mm) 0.37 0.12 0.12 0.31 0.28
tz(mm) 15.07 0.90 0.60 1.55 0.99
Lost Number 9 0 0 0 0

Table 3. Trinocular tracking evaluation on Object rotates only with
fixed cameras mode.

tainty in the view direction, resulting in increased error.
Therefore, in practical applications, our primary purpose is
to eliminate the uncertainty of the object pose through dif-
ferent views, meaning that increasing the camera angle is
more preferred than increasing the camera number.

If we use multiple cameras, we should also increase the
included angle between them as much as possible, uni-
formly distributed in space.

B.2. Binocular Tracking Results in Mode 2

Table 2 shows the binocular tracking evaluation results
in mode 2, i.e., Object rotates only with fixed cameras. In
this mode, C-0 to C-4 and the object constitute a plane, and
C-5 and C-6 are outside the plane. Since the object only ro-
tates, the translation errors in the X-axis and Y -axis direc-
tions during tracking are tiny. The X-axis translation error
of some binocular tracking is larger than that of monocu-
lar tracking, which is caused by the geometric shape of the
object.

Generally, when the camera angle is within 90◦, as the
camera angle increases, the rotation and translation errors
gradually decrease, especially the translation in the Z-axis
direction, which is consistent with the conclusions in the
manuscript.

Since C-5 and C-6 are looking at the object from a higher
position, the translation components of the X-axis and the
Y -axis are a little different from C-1 to C-4, where the X-

axis component is better but Y -axis component is worse.

B.3. Trinocular Tracking Results in Mode 2

Table 3 gives the trinocular evaluation results under
mode 2. For the translation component, the plane pattern
is better than the cone pattern, i.e., the precision depends
on the two cameras with the largest angle. For the rotation
component, the precision of the two patterns is very close,
which is caused by the object only rotating.

Combining Table 2 and Table 3, we find that adding
cameras between the two cameras will reduce the tracking
accuracy, which is consistent with the conclusions above.
For example, the Z-axis translation precision of C-0/C-4 is
0.36mm, while the corresponding precision in C-0/C-2/C-4
is only 0.60mm. At the same time, the rotation precision is
also reduced.

B.4. Intermediate Results

This section analyzes the detailed effect of our multi-
view method through the intermediate results. Fig. 2 shows
the binocular tracking results results on real data. The
first row is the input images of the two cameras with 90◦

included angle, the second row is the tracking result of
TPAMI19, which performs the monocular tracking, and the
third row is our multi-view tracking result. The C-1 image
is the result of rendering with T 1, and it can be seen that the
reprojection region of TPAMI19 can precisely match the in-
put image visually. The C-2 image is the rendering result
of T ′

2, that is, transforming Oc1 to Oc2 by T ′
2 =2T 1T 1

for rendering. We can see that TPAMI19 has an obvious
translation error in the camera view direction. Our joint
optimization can get the precise pose, resulting in the re-
projection region on each camera image is precise. Fig. 3
shows the intermediate results on the synthetic data (Cam-
eras move freely mode), which is consist with Fig. 2.

Fig. 4 is another set of results on the synthetic data. We
use two cameras with 90◦ included angle to estimate the ob-
ject pose and then observe the object with three other views,
i.e., 30◦, 45◦, and 60◦. We enlarge the image for better
observation, where the purple contour in the figure is the
rendering result, and we can see that they can be visually
aligned with the object contour precisely in all views.

Fig. 5 is the trinocular tracking result on real data, which
is also enlarged for better observation. We can see that
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Figure 2. Binocular tracking results results on the real data. There are 4 sets of images captured from C-1 and C-2. TPAMI19 perform the
monocular tracking on C-1 and map it to C-2 for display through 2T 1T 1, where we can see a large translation error in the camera view
direction. Our method can joint the information of two cameras to get precise visual results under each camera.

Figure 3. Binocular tracking results on the synthetic data (cameras freely move).

our method can get excellent visual performances under all
views.

C. Monocular Tracking Evaluation on the
BCOT Benchmark

In this section, we will give more details of the BCOT
benchmark. Then we show more examples and evaluate
state-of-the-art monocular tracking algorithms comprehen-
sively.

C.1. More Details of the BCOT Benchmark

Time cost and iterations. The tracking time of the pro-
posed multi-view tracking method depends on the selected
basic monocular tracking method and the number of cam-
eras used. There is no extra time needed to convert the basic
coordinate frame to the object-centered coordinate frame.

For pose annotation when constructing BCOT Bench-
mark, the optimization executes 5 rounds (7 iterations per
round), while for normal cases, only 1 round is required.

Sequences discarded. As stated in the manuscript, we
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Figure 4. We use the basic camera (0◦ camera) and 90◦ camera to estimate the object pose and then observe the tracking result with three
other perspectives, i.e., 30◦, 45◦, and 60◦ cameras. The object is precisely aligned with the image in all views.

Figure 5. Trinocular tracking results on the real data. C-0 to C-2 represent the images captured by 3 cameras, respectively, and our method
can get precise results in each view.

will discard sequences with large errors. Specifically, we
discarded 36 sequences, i.e., 20×22-404=36.

C.2. More Examples of the BCOT Benchmark

Fig. 6−8 shows more BCOT benchmark examples. The
blue contour is the result rendered according to the annota-
tion pose. Our benchmark is markerless and can annotate
high-precision poses.

C.3. Monocular Tracking Evaluation

We further analyze the performance of the methods in in-
door and outdoor scenes. Table 4 and Table 5 respectively
show the accuracy of different methods in indoor and out-
door scenes. Fig. 9 and Fig. 10 respectively show the AUC
scores of the ADD metric in the indoor scene and the out-
door scene.

Analysis. Through comparative analysis, the
ACCV2020 gets the best performance overall. But as
stated in the manuscript, it has some limitations when
directly used. Besides, the origin of the object model
coordinate frame needs to be set at the center of the model,
which may limit the application scenario.

With further analysis, it can be seen from Table 4 that
in indoor scenes, TVCG2021 achieves the best perfor-
mance in ADD metric and 2◦,2cm metric. This indicates
that TVCG2021 has higher tracking precision in complex
scenes, where the complexity of indoor scenes in the BCOT
dataset is higher than that of outdoor scenes. In outdoor
scenes, the background is relatively simple, ACCV2020
shows the best tracking performance, but TVCG2021 still
has the highest rotation precision.

The reason is ACCV2020 uses prerendered templates in
fixed discrete view angles (in order for acceleration), which
introduces angular errors in templates and reduces its pre-
cision in rotation estimation. On the contrary, TVCG2021
render templates online, and there is no error in templates.
The translation is insensitive to the small angular error of
templates and thus is less affected.

In addition, it is found from Fig. 10 that MTAP2019
shows a high AUC score under the ADD metric. This is be-
cause MTAP2019 can obtain high translation precision in a
simple background (also shown in the 2cm metric in Table
5), and the ADD error depends more on the translation er-
ror. However, except for ACCV2020 and MTAP2019, the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6. More examples of the BCOT benchmark, where the blue contour is rendered according to the annotation pose. (a) Ape model,
static camera set, easy scene, translation movement. (b) Deadpool model, static camera set, easy scene, suspension movement. (c) Teapot
model, static camera set, easy scene, handheld movement. (d) RTI Arm model, static camera set, complex scene, translation movement.
(e) Lamp Clamp model, static camera set, complex scene, suspension movement. (f) Squirrel model, static camera set, complex scene,
handheld movement. (g) RJ45 Clip model, movable camera set, complex scene, suspension movement, occlusion.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7. More examples of the BCOT benchmark, where the blue contour is rendered according to the annotation pose. (a) Wall Shelf
model, static camera set, dynamic light, translation movement. (b) Driller model, static camera set, dynamic light, suspension movement.
(c) 3D Touch model, static camera set, dynamic light, handheld movement. (d) Lamp Clamp model, movable camera set, complex scene,
suspension movement. (e) Cat model, movable camera set, complex scene, handheld movement. (f) Stitch model, movable camera set,
complex scene, dynamic light, suspension movement. (g) Tube model, movable camera set, complex scene, dynamic light, handheld
movement.
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(a)

(b)

(c)

(d)

Figure 8. More examples of the BCOT benchmark, where the blue contour is rendered according to the annotation pose. The outdoor
scenes provide both two views. (a) Squirrel model, outdoor scene 1, movable camera set, suspension movement. (b) Stitch model, outdoor
scene 1, movable camera set, handheld movement. (c) RJ45 Clip model, outdoor scene 2, movable camera set, suspension movement. (d)
Tube model, outdoor scene 2, movable camera set, handheld movement.

Method ADD−0.02d ADD−0.05d ADD−0.1d 5◦, 5cm 5◦ 5cm 2◦, 2cm 2◦ 2cm Time(ms)
MTAP2019 7.0 32.5 61.6 57.9 58.3 97.8 15.4 16.9 75.1 8.6
TPAMI2019 17.7 43.5 66.5 75.0 75.8 92.0 44.8 47.5 76.0 33.3
CGF2020 18.7 45.5 70.6 83.2 83.5 96.0 52.9 56.8 81.2 32.2
ACCV2020 9.8 43.1 76.4 88.2 88.4 99.6 45.6 49.2 87.8 3.5
C&G2021 13.5 42.6 69.2 83.1 84.0 96.6 43.8 47.6 79.9 19.2
JCST2021 21.7 52.0 76.9 87.0 87.4 97.8 55.8 58.5 86.0 38.8
TVCG2021 23.6 55.5 78.5 87.1 87.4 97.3 58.2 60.6 87.1 32.8

Table 4. Comparison of monocular 3D tracking methods of indoor scenes.

Method ADD−0.02d ADD−0.05d ADD−0.1d 5◦, 5cm 5◦ 5cm 2◦, 2cm 2◦ 2cm Time(ms)
MTAP2019 3.2 32.9 69.0 49.3 49.9 97.9 8.0 9.0 82.0 9.1
TPAMI2019 2.9 14.0 43.3 80.3 84.3 91.4 34.8 49.5 55.7 36.6
CGF2020 2.1 10.3 38.1 85.4 87.5 95.4 33.6 52.6 53.9 34.3
ACCV2020 12.5 49.0 77.6 90.3 90.7 99.4 46.5 50.0 87.8 3.3
C&G2021 2.7 15.2 41.8 81.7 85.8 92.7 30.8 46.1 55.1 18.4
JCST2021 3.8 17.6 49.2 87.1 89.1 96.3 41.9 55.7 64.2 37.9
TVCG2021 3.9 16.8 47.9 87.2 90.3 94.7 41.3 56.7 60.7 37.8

Table 5. Comparison of monocular 3D tracking methods of outdoor scenes.
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Figure 9. Indoor scene tracking accuracy under various ADD
error tolerance thresholds.

Figure 10. Outdoor scene tracking accuracy under various ADD
error tolerance thresholds.

AUC scores of ADD in other methods have decreased in
outdoor scenes, indicating that their translation errors have
increased. This shows domain differences between outdoor
and indoor scenes, which may affect the tracking method.

D. Comparison with Other Tracking Datasets
Other datasets used for 3D object tracking include

RBOT, OPT, and YCB-Video. Fig. 11 shows some exam-
ples of other datasets.

Datas. Fig. 11(a) is an example of the RBOT dataset.
It is semi-synthetic with rendered foreground objects. The
synthesized dynamic light, noise, occlusion, and object mo-
tion are very different from real scenes, which also prevents
them from being used by the learning-based methods.

Fig. 11(b) is an example of the OPT dataset. It is a
real scene dataset, and the GT pose is calculated by arti-
ficial markers. Objects in the dataset are always stationary,
surrounded by white areas and a large number of artificial

(a)

(b)

(c)

Figure 11. Examples of other datasets. (a) RBOT dataset. (b)
OPT dataset. (c) YCB-Video dataset.

markers.
Fig. 11(c) shows an example of the YCB-Video dataset.

It is also a real scene dataset, which calculates the GT pose
of objects through depth data. As stated in the manuscript,
this annotation method will suffer from large errors. In ad-
dition, objects in YCB-Video also remain stationary.

The main feature of BCOT is real-scene and high-
precision. It is markerless, and the camera and object are
both dynamic. Besides, its labeling error also achieves
the highest precision. Currently, the learning-based and
the optimization-based methods are studied separately on
different benchmarks (RBOT v.s. YCB-Video). We be-
lieve that one important reason is the lacking of high-
precision real-scene datasets, which now can be addressed
with BCOT.
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