
BigDatasetGAN: Synthesizing ImageNet with Pixel-wise Annotations

Supplementary Material

A. BigDatasetGAN Implementation Details
A.1. BigGAN

Training. When training the segmentation branch of Big-
GAN, we first load the pre-recorded latent codes of the an-
notated samples. We then pass the latent codes as well as the
class information into the pre-trained BigGAN model (with
resolution 512×512) to extract the features. With BigGAN
features and class information (input to BigGAN), we can
train the segmentation branch with the binary cross-entropy
loss on the human-annotated segmentation masks. Note that
in this case we exploit the fact that only foreground object
and background scene are annotated in each image and the
class information is known. We use the Adam [9] optimizer
with a learning rate 0.001 and batch size of 8. We train the
segmentation branch with 5k iterations.

Uncertainty Filtering. As mentioned in Sec 3.2 in the main
paper, we apply uncertainty filtering on top of the truncation
trick [2] and rejection sampling [12]. We train 16 segmen-
tation heads, and follow [10] and [16] to use the Jensen-
Shannon (JS) divergence as the uncertainty measure. Con-
cretely, the JS divergence is defined as:

JS(P1, P2, ..., PN) = H

(
1

N

N∑
i

Pi

)
− 1

N

N∑
i

H(Pi),

where N is the number of models, in our case is 16. H
is the entropy function and Pi is the output distribution of
model i. We record the uncertainty score for each sample
and then follow [16] to filter out the 10% most uncertain
image samples.

Ablation Study on Truncation Threshold. Here, we study
the effect of the truncation threshold. We sample datasets
with different truncation thresholds ranging from 0.6 to 2.0.
Higher truncation thresholds increase the diversity of the
dataset but lower image fidelity. In some cases, if the trun-
cation threshold is too high, noisy images are generated. We
show the downstream task performance on our ImageNet
segmentation task for the dog class. We report segmenta-
tion mIoU as well as FID (5k samples) to measure sampled
image quality for different truncation thresholds in Table 1.
We find a sweet-spot for both downstream task performance
and image sample quality at the truncation threshold 0.9 and
we use this truncation threshold for all experiments.

A.2. VQGAN

Architecture Details. We use VQGAN [6] trained on Ima-
geNet at 256×256 resolution. VQGAN’s class-conditional

Truncation Threshold ImageNet-Dog segmentation mIoU FID-5k
0.6 84.2 22.35
0.8 86.4 18.42
0.9 87.0 14.95
1.0 86.0 15.54
1.5 87.5 19.57
2.0 86.6 39.52

Table 1. Ablation study on truncation threshold. Here, we mea-
sure downstream task performance in mIoU and sampled image
quality in FID-5k. Higher truncation rates increase the image di-
versity, which is beneficial for downstream task performance, but
can hurt image quality as measured in FID-5k.

transformer consists of 48 self-attention [13] layers, each
with 1536 dimensions, operating on the 16 × 16 codebook
with the vocabulary size of 16384. We gather features
from every fourth transformer layer for each spatial location
(16 × 16) of the encoder output. Additionally, we gather
features from the decoder layers at 16 × 16 to 256 × 256
resolutions. In total, FVQGAN consists of 12 transformer
features and 7 decoder features. Similarly to BigGAN, we
group features according to their spatial resolutions into a
high-level group (16 × 16 to 32 × 32), a mid-level group
(64× 64 to 128× 128), and a low-level group (256× 256).
We reduce the dimensionality of each feature to 128 using
a 1x1conv operation and then upsample features within
the same group into the highest resolution within the group.
Features from two separate levels are fused by upsampling
the features of the previous, higher level group to match the
current layer’s spatial resolution and then concatenating the
two levels, followed by a mix-conv operation which con-
tains a 3x3conv layer. Finally, three 1x1conv layers are
used to output the segmentation logits. We use layer nor-
malization [1] between the 1x1conv layers.

Training. To train the segmentation branch for VQGAN,
we leverage its encoder to encode the images that were
previously obtained via BigGAN sampling (with resolution
256 × 256). We can then extract the features as described
above and obtain the segmentation logits. Additionally, the
class-conditional transformer takes in the class label as in-
put. We use the same binary cross-entropy loss for the fore-
ground and background segmentation as in BigGAN train-
ing. We use the Adam [9] optimizer with a learning rate of
0.001 and batch size of 8.

B. ImageNet Segmentation Benchmark Details

B.1. Dataset Statistics

Table 2 provides the dataset split details for the 7 tasks in
the benchmark. Please refer to Sec 5.1 in the main paper for
the dataset details and Sec 5.2 for details about benchmark

1

Dog Bird FG/BG MC-16 MC-100 MC-128 MC-992
train 657 366 5294 1268 540 5294 5294
test 1040 512 8316 1967 798 8316 8316

Table 2. ImageNet segmentation benchmark splits. The train-
ing set is based on Synthetic-annotated (Images sampled from
BigGAN), while the testing set consists of images from Real-
annotated.

Imagenet-MC-16 (train) MS-COCO-MC-16 (test)
Sup.IN 58.7 25.8
BigGAN-off 64.6 29.2

Table 3. Off-the-shelf usage of synthetic labels. Here we com-
pare semantic segmentation performance when training on the
ImageNet-MC-16 task and testing on MS-COCO images with the
same classes. Comparing to the baseline method Sup.IN, which
does not use any synthetic datasets generated by our method,
BigGAN-off shows higher in-domain performance as well as out-
of-domain test performance. Numbers are measured in mIoU.

tasks. We plan to provide a detailed class mapping when
launching the public benchmark.

B.2. Training Setup

For all the baselines and our methods, we use DeepLab-
v3 [3] with Resnet-50 [8] as the image backbone model. We
use the SGD optimizer with learning rate 0.01, momentum
0.9 and weight-decay 0.0001. We use polynomial learning
rate decay with power 0.9. We use batch size 64 for all tasks
and train for 200 epochs. For augmentation, we use random
resize with scales from 0.5 − 2.0, random crop and ran-
dom horizontal filp. We use resolution 224 for both training
and testing. When training with our synthetic dataset, we
use the same training schedule and augmentation policy as
described here.

As objective, we use the cross-entropy loss function for
all tasks except for MC-992. The task MC-992 needs to seg-
ment over 992 classes, where the object pixel distribution is
varying greatly between different classes. This corresponds
to an imbalanced training setup, which makes learning the
model difficult. We found that training did not converge
well using the standard cross-entropy loss. In order to miti-
gate this issue, we use the focal loss [11] for all the methods
in task MC-992.

B.3. Off-the-shelf Usage of Synthesized Labels

In our experiments, we primarily use the synthesized la-
beled datasets for pre-training. However, we can also di-
rectly use them “off-the-shelf” for downstream task train-
ing. In order to show the off-the-shelf usage of our synthe-
sized labels from ImageNet, we prepared a filtered dataset
from MS-COCO with the same 16 classes as in our Im-
ageNet segmentation benchmark task MC-16. We com-
pare semantic segmentation performance when training on
the ImageNet-MC-16 task and directly test on the MC-
COCO data (denoted as MS-COCO-MC-16) without any

Figure 1. Object center scatter plots. We visualize center po-
sitions of the tight bounding box of pixel-wise labels for the
Real-annotated, Synthetic-annotated, BigGAN-sim and VQGAN-
sim datasets. The box center is normalized with respect to the
original image size.

fine-tuning. Our method BigGAN-off shows better per-
formance than standard supervised training in both the in-
domain (ImageNet training data) and out-of-domain (MC-
COCO) test settings (Table 3).

C. Dataset Analysis Details

C.1. Center Distributions

We visualize scatter plots of object center locations for
the Real-annotated, Synthetic-annotated, BigGAN-sim and
VQGAN-sim datasets in Figure 1. We fit a tight bound-
ing box over the segmentation mask and use the center
of the bounding box as the center location. Note that the
location is normalized with respect to the original image
size. We see that most of the object centers are biased to-
wards the image center for all datasets. Compared to the
human-annotated datasets, BigGAN-sim and VQGAN-sim
show noisier center distributions, in particular towards the
image corners.

C.2. Geometry Metrics

In Table 1 in the main paper, we compute geometry met-
rics to measure shape complexity (SC) and shape diversity
(SD) of the human-annotated dataset as well as the synthetic
dataset. Here, we provide the corresponding implementa-
tion details.

Implementation.. We first filter out masks with a total
number of pixels below 100 to avoid noisy labels. We then
calculate the connected components in the mask and only
use the largest connected component in our measurement.

2

We further use OpenCV’s findContours function with
the CHAIN APPROX SIMPLE flag which compresses hori-
zontal, vertical, and diagonal segments and leaves only their
end points to extract a simplified polygon. Note that the
simplification happens in pixel space and the extracted poly-
gons do not have the same scales. In order to overcome such
scaling issues, we normalize the extracted polygon to a unit
square by pi = (pi−pmin)/(pmax−pmin) (this operation is
applied separately for both horizontal and vertical directions
in an image), where pi is the point in the extracted polygon,
and pmin and pmax are the minimum and maximum point
coordinates (for either horizontal or vertical direction) over
the set of points for a given polygon. We further apply the
Douglas-Peucker algorithm [5] with a threshold of 0.01 to
remove redundant points.

Shape Complexity. After applying the pre-processing
steps mentioned above, the shape complexity (SC) is calcu-
lated as the number of points of the normalized simplified
polygon. We also measure polygon length (PL) in Table 1
from the main paper.

Shape Diversity. We calculate the shape diversity by mean
pair-wise Chamfer distance [7] per class and average across
classes. Specifically, Chamfer distance is defined as

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈Ss

min
x∈S1

||x− y||22

where S1 and S2 are sets of points corresponding to differ-
ent polygons. In our case, we calculate average pair-wise
dCD between all polygons within each class. Then, we com-
pute the shape diversity (SD) metric as the average distance
over all classes.

D. Transfer Learning Experiments
D.1. Pre-training Implementation

We closely follow the pre-training setup of
DenseCL [14], and use SGD as the optimizer with
weight decay and momentum set to 0.0001 and 0.9,
respectively. The dictionary size is set to 65536 and the
momentum update rate of the encoder is set to 0.999. We
also adopt its augmentation policy with 224 × 224 random
resized cropping, random color jittering, random gray-scale
conversion, Gaussian blurring and random horizontal flips
for contrastive learning. Note that since texture and color
are important hints for semantic segmentation, we only
use random resized cropping with resolution 224 × 224
and random horizontal flip when training the segmentation
branch with our synthetic dataset. The batch size is 256,
and we train on 8 GPUs with a cosine learning rate decay
schedule. We pre-train the backbone on ImageNet using the
original contrastive losses for 150 epochs and then jointly

train the segmentation branch using the cross-entropy loss
for another 50 epochs.

D.2. Downstream Task Details

Benchmark Implementation. For object detection and
instance segmentation tasks on Pascal VOC, MS-COCO
and Cityscapes, we use standard benchmark configurations
from OpenSelfSup1. The model is trained using Detec-
tron2 [15]. For semantic segmentation tasks on Pascal VOC
and Cityscapes, we use configurations from DenseCL2 im-
plemented in MMSegmentation [4].

E. Qualitative Results

We show random samples from the human-annotated
and synthetic datasets. See Figure 2 for dataset samples
from the Real-annotated dataset where annotation is done
on real images. Figure 3 shows dataset samples from
the Synthetic-annotated dataset where human annotation is
on BigGAN generated images. For our synthetic dataset
BigGAN-sim generated by BigGAN, see Figure 4, and for
the VQGAN-sim dataset generated by VQGAN, see Figure
5. Compared to the synthetic dataset, Real-annotated im-
ages have more complex backgrounds and structure. How-
ever, we also see that the synthetic datasets generated by
BigGAN and VQGAN include photo-realistic and diverse
images as well as high quality labels.

We also show per-class samples where images in the
same row are from the same class. For BigGAN-sim per-
class samples, please see Figure 6. For VQGAN-sim per-
class samples, see Figure 7. Note that we select the same
classes for both BigGAN-sim and VQGAN-sim for easy
comparison. Comparing to BigGAN-sim, the VQGAN-sim
dataset samples are more diverse in terms of object scale,
pose as well as background. However, we see BigGAN-
sim has better label quality than VQGAN-sim where in some
cases the labels have holes and are noisy.

We also include mean shape visualizations for differ-
ent classes from the BigGAN-sim dataset (see Figure 8).
We first use a tight bounding box to fit the segmentation,
and then crop and resize the segmentation into resolution
32 × 32. We use k-means clustering with k = 5 for each
class to calculate the major modes of the resized segmen-
tation mask. In Figure 8, we randomly select 500 classes
and for each class we randomly select one cluster out of
the 5 clusters and visualize the mean shape. We see diverse
shapes with different poses especially for classes related to
animals. Some classes do not have clear shapes. This might
be because the randomly selected mode is potentially not
the most meaningful mode.

1https://github.com/open-mmlab/OpenSelfSup
2https://github.com/WXinlong/DenseCL

3

Figure 2. Examples from the Real-annotated dataset. We visualize both the segmentation masks as well as the boundary polygons.

4

Figure 3. Examples from the Synthetic-annotated dataset. We visualize both the segmentation masks as well as the boundary polygons.

5

Figure 4. BigGAN-sim random samples. We visualize both the segmentation masks as well as the boundary polygons.

6

Figure 5. VQGAN-sim random samples. We visualize both the segmentation masks as well as the boundary polygons.

7

Figure 6. BigGAN-sim per-class samples. We visualize both the segmentation masks as well as the boundary polygons.

8

Figure 7. VQGAN-sim per-class samples. We visualize both the segmentation masks as well as the boundary polygons.

9

Figure 8. BigGAN-sim mean shapes. Mean shapes are calculated using k-means clustering over normalized segmentation masks.

10

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 1

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2019. 1

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. arXiv:1706.05587, 2017. 2

[4] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 3

[5] David H Douglas and Thomas K Peucker. Algorithms for
the reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: the interna-
tional journal for geographic information and geovisualiza-
tion, 10(2):112–122, 1973. 3

[6] Patrick Esser, Robin Rombach, and Björn Ommer. Tam-
ing transformers for high-resolution image synthesis. arXiv
preprint arXiv:2012.09841, 2020. 1

[7] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set
generation network for 3d object reconstruction from a single
image. arXiv preprint arXiv:1612.00603, 2016. 3

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 2

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2017. 1

[10] Weicheng Kuo, Christian Häne, Esther Yuh, Pratik Mukher-
jee, and Jitendra Malik. Cost-sensitive active learning for
intracranial hemorrhage detection. In MICCAI, 2018. 1

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. arXiv
preprint arXiv:1708.02002, 2018. 2

[12] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with vq-vae-2. arXiv
preprint arXiv:1906.00446, 2019. 1

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 1

[14] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong,
and Lei Li. Dense contrastive learning for self-supervised
visual pre-training. arXiv preprint arXiv:2011.09157, 2021.
3

[15] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 3

[16] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-
Francois Lafleche, Adela Barriuso, Antonio Torralba, and
Sanja Fidler. Datasetgan: Efficient labeled data factory with
minimal human effort. In CVPR, 2021. 1

11

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	. BigDatasetGAN Implementation Details
	. BigGAN
	. VQGAN

	. ImageNet Segmentation Benchmark Details
	. Dataset Statistics
	. Training Setup
	. Off-the-shelf Usage of Synthesized Labels

	. Dataset Analysis Details
	. Center Distributions
	. Geometry Metrics

	. Transfer Learning Experiments
	. Pre-training Implementation
	. Downstream Task Details

	. Qualitative Results

