
A. Implementation Details

A.1. Event Knowledge Extraction Details.

Text Knowledge Extraction Details. We use the state-
of-the-art text information extraction tools OneIE [5]. In
detail, we run the dockerized version GAIA [3] that is using
the DARPA AIDA event ontology 1, the most fine-grained
text event ontology, attached in event ontology oneie.json.

Example Event Types Arguments

ArtifactExistence.ArtifactFailure.MechanicalFailure MechanicalArtifact, Instrument, Place
ArtifactExistence.DamageDestroy.Damage Damager, Artifact, Instrument, Place
ArtifactExistence.DamageDestroy.Destroy Destroyer, Artifact, Instrument, Place
ArtifactExistence.Shortage.Shortage Experiencer, Supply, Place
Conflict.Attack Attacker, Target, Instrument, Place
Conflict.Attack.AirstrikeMissileStrike Attacker, Target, Instrument, Place
Conflict.Attack.BiologicalChemicalPoisonAttack Attacker, Target, Instrument, Place
Conflict.Attack.Bombing Attacker, Target, Instrument, Place
Conflict.Attack.FirearmAttack Attacker, Target, Instrument, Place
Conflict.Attack.Hanging Attacker, Target, Instrument, Place
Conflict.Attack.Invade Attacker, Target, Instrument, Place
Conflict.Attack.SelfDirectedBattle Attacker, Target, Instrument, Place
Conflict.Attack.SetFire Attacker, Target, Instrument, Place
Conflict.Attack.Stabbing Attacker, Target, Instrument, Place
Conflict.Attack.StealRobHijack Attacker, Target, Instrument, Place
Conflict.Attack.Strangling Attacker, Target, Instrument, Place
Disaster.AccidentCrash.AccidentCrash DriverPassenger, Vehicle, CrashObject, Place
Disaster.DiseaseOutbreak.DiseaseOutbreak Disease, Victim, Place
Disaster.FireExplosion.FireExplosion FireExplosionObject, Instrument, Place
Justice.ArrestJailDetain.ArrestJailDetain Jailer, Detainee, Crime, Place
Justice.InitiateJudicialProcess Prosecutor, Defendant, JudgeCourt, Crime
Justice.InitiateJudicialProcess.ChargeIndict Prosecutor, Defendant, JudgeCourt, Crime
Justice.InitiateJudicialProcess.TrialHearing Prosecutor, Defendant, JudgeCourt, Crime
Justice.Investigate Investigator, Defendant, Place
... ...

Table 1. Example event types from Text Information Extraction
system, the full list is attached in event ontology oneie.json.

In addition, we explore open-world event extraction that
is not limited to a specific event ontology. We apply Ope-
nIE tools [1, 10], which output ⟨subject, relation, object⟩.
For example, from the caption in Fig. 2 in the main paper,
OpenIE extracts ⟨protesters, CARRY, injured man⟩, ⟨clashes,
WITH, riot police⟩, and ⟨Independence Square, IN, Kyiv⟩.
However, from 100 randomly selected captions, we find that
72.1% events from OpenIE are not visually detectable, such
as THINKING and INVITING. Considering that these events
will introduce a lot of noise to the cross-media alignment,
we only adopt the aforementioned supervised IE model to
obtain event knowledge from text.

Visual Knowledge Extraction Details. We apply Faster
R-CNN [9] to detect objects, which is trained on Open Im-
ages [2] with 600 object types (classes). For event knowledge
extraction on images, the most similar tool is grounded sit-
uation recognition [8], which achieves 39.6% accuracy on
event extraction. Considering the errors propagated from
extraction models, instead of extracting event knowledge
from images as a supervision signal, we take advantage of
text information extraction that have better event extraction
performance (75.2% on F-score), to provide supervision to
enhance visual event understanding.

1https://github.com/NextCenturyCorporation/AIDA-
Interchange - Format / blob / master / java / src / main /
resources/com/ncc/aif/ontologies/LDCOntologyM36

A.2. Parameter Settings

We utilize the Text and Vision Transformers of “ViT-B/32”
to initialize our encoders. The batch size is 128. We set the
learning rate as 1e−6 with a linearly-decaying schedule. We
train 20 epochs with Adam [6] as the optimizer, and select
the best model based on the image-retrieval performance
on VOANews testing dataset. The optimal transport plan
is obtained within k = 50 iterations. To get the bounding
box embeddings from CLIP visual backbone, we extract grid
features and perform average pooling on the grids covered
by the bounding box. For CLIP-ViT-B models, we reshape
the patch representation of the final layer into grid features.
For CLIP-ResNet models, we use the grid features from the
last layer before the pooling. The model is trained on eight
Tesla V100 GPUs with 32GB DRAM, and the pretraining
takes around one day.

A.3. Multimedia Event Extraction Implementation
Details

Task Setting. Multimedia Event Extraction [4] aims to
(1) classify images into eight event types, and (2) localize
argument roles as bounding boxes in images.

Evaluation Goal. We choose this task as a direct assess-
ment of event structure understanding.

Our Approach. Under zero-shot settings, we directly
evaluate the pretraining model on the testing set. We evaluate
the event extraction and argument extraction on all images,
which contain visual events of 8 types. We add OTHER to
detect the images not belonging to the eight target types.
The description of OTHER is An image of other events. For
argument extraction, we rank argument roles for each ob-
ject bounding box, and also add OTHER argument role as a
candidate with the description other roles of the event.

Under supervised settings, we use the same training data
SWiG as the sate-of-the-art model [4], but replacing the text
event table with the annotation table, and setting the optimal
transport plan as the fine-grained alignment between event
graphs. We use the same training dataset SWiG [8] with
125k images to further finetune our model to compare with
the supervised models. During finetuning, we replace the
text event extraction results with the annotated events for
images, and set the optimal transport plan as the ground truth
alignment between arguments and object bounding boxes.

A.4. Grounded Situation Recognition Implementa-
tion Details

Task Setting. Grounded Situation Recognition [8] selects
an event type from 504 verbs, and predicts the entity name
and the bounding box for each argument role.

Evaluation Goal. It is also a direct evaluation of event
structure understanding, but with larger size of event types
and argument roles.



Implementation. Grounded Situation Recognition re-
quires the model to assign each image to a verb from 504
verbs (such as RIDING), and name the argument (such as
man) of each argument role (such as AGENT). For each
image, we rank the verbs using the description “An image
of ⟨verb⟩”. For each argument role, we obtain the candidate
names from the training set, and rank the candidate names
using the description “The ⟨name⟩ is a ⟨role⟩ of ⟨verb⟩”,
such as “The man is a agent of riding”. For each object, we
rank argument roles including OTHER, similarly to Multime-
dia Event Extraction. Following [8], we ignore the PLACE
argument role since it always not appear in the images. The
supervised setting is the same as Multimedia Event Extrac-
tion.

Evaluation Metrics. We follow [8] to evaluate the ac-
curacy of verb prediction (verb), argument name prediction
(value for each argument and value-all for all arguments of
an event), and argument bounding box and name prediction
(ground for each argument and ground-all for all arguments).

A.5. VCR Implementation Details

Task Setting. VCR is a question answering task2, in-
cluding (1) Answer Prediction from four options, and (2)
Rationale Prediction from four options to support the afore-
mentioned answer.

Evaluation Goal. We include this task to evaluate
whether event understanding can better support downstream
tasks. To evaluate the quality of pretraining models, we adopt
zero-shot settings solely relying on image-text alignment for
a fair comparison.

Implementation. For Answer Prediction, we rank an-
swers concatenated with questions. For Rationale Prediction,
we rank rationales by concatenating the question, the answer
and the rationale. The ranking is based on both image align-
ment d(i, t) and event graph alignment d(Gi, Gt). We also
consider the question as query and concatenate them with
the answer during ranking.

A.6. VisualCOMET Implementation Details

Task Setting. Given the image and the event happening
in the image with its participants, VisualCOMET [7] aims
to generate “intents” showing what the participants “need to
do” before the image event, “want to do” during the image
event, and “will most likely to do” after the image event.

Goal. It necessitates a deep grasp of events and their con-
nections, as well as a thorough comprehension of arguments
roles.

Implementation. The input of VisualCOMET3 is an im-
age with events and participants, as shown in Fig. 1. The
output are intents, which is a short description of an event,
such as “swim to safety”, “sink in the water”, etc. For each

2https://visualcommonsense.com/
3https://visualcomet.xyz/

Figure 1. An example from VisualCOMET [7].

image and participant, we use intents from the training data
as candidate intents, and rank them based on both image
alignment d(i, t) and event graph alignment d(Gi, Gt). The
text is the concatenation of (1) input event description, (2)
a temporal description (including “before person1 need to”,
“because person1 need to” and “after person1 will most likely
to”), and (3) the candidate intents. For example, given the
image with the input event “person1 is trying to escape from
the water”, we concatenate it with the temporal description
“because person1 wanted to” and the candidate intent “swim
to safety while”. The ranking is based on both image align-
ment d(i, t) and event graph alignment d(Gi, Gt), similar to
Visual Commonsense Reasoning.

B. Effect of Text Information Extraction Perfor-
mance

Since text information extraction may have errors, we
analyze its performance in the following sections.

B.1. Text Event Extraction Performance Table

The extraction performance of each component is shown
in Tab. 2, which achieves 72.1% F-score on event extraction.

Component Benchmark Metric Score

Event
Mention
Extraction

Entity ACE+ERE F1 90.2
Trigger ACE+ERE F1 72.8

Argument ACE+ERE F1 54.8
Relation ACE+ERE F1 49.5

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8
Event ERE-ES CoNLL 81.0

Table 2. Performance (%) of each component.

B.2. Event Type distribution

As shown in Fig. 2, the events extracted from captions
are primarily visually detectable events, i.e., the. events can



Model Flickr30k MSCOCO VOANews
text-to-image image-to-text text-to-image image-to-text text-to-image image-to-text

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 62.2 85.9 91.7 81.9 95.0 97.5 30.3 55.0 66.4 50.3 75.7 84.0 21.2 63.4 74.7 23.4 63.1 73.9
CLIP pretrained on news 64.3 87.5 92.7 81.2 95.4 98.2 32.2 57.4 68.4 50.8 75.6 83.8 23.5 69.5 79.9 25.1 70.2 80.1

CLIP-Event 67.0 89.0 93.9 82.6 95.9 98.4 34.0 59.4 70.5 51.3 76.0 84.0 27.5 70.7 82.1 28.7 71.0 81.0
w/o OptimalTransport 65.6 88.3 93.6 80.5 94.8 97.4 32.5 58.0 68.9 51.0 75.2 82.9 25.5 70.6 80.7 26.9 70.4 80.5

Table 3. R@1(%), R@5(%), R@10(%) on image retrieval on Flickr30k (1k test), MSCOCO (5k test) and VOANews.

Figure 2. The top frequent event types from the event extraction
results on VOANews captions.

be depicted in the images.
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