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1. Overview
In this supplementary material we present:

• The detailed statistics of the proposed datasets (Sec-
tion 2).

• Implementation details (Section 3).

• Additional experimental results (Section 4).

• Most common words in query sentences (Section 5).

• Most common novel compositions (Section 6).

• Most common novel words (Section 7).

• Additional examples (Section 8).

2. Dataset Statistics
Table 1 summarizes the detailed statistics of our pro-

posed Charades-CG and ActivityNet-CG datasets.
The distribution of the composition types and their cor-

responding examples are illustrated in Figure 1. Note that
adjective-noun phrases are rare in the original Charades-
STA dataset, and most of them are some high-frequency
phrases, so the proportion of novel adjective-noun compo-
sitions is relatively small in our Novel-Composition set.

3. Implementation Details
For all methods, we use the public official implemen-

tations to get their compositional temporal grounding re-
sults. We train them on the training set and evaluate them
on the test-trivial, novel-composition, and novel-word splits
respectively. Following [11], we use unified video and lan-
guage features for more fair comparisons. Concretely, we
use I3D features [2] for the video in Charades-CG and C3D
features [10] for the videos in ActivityNet-CG. We use pre-
trained GloVe [8] word vectors to initialize each word in the
language queries.

In our proposed framework, we use the I3D model [2]
pretrained on kinetics [6] dataset as our action detector, and
use Faster R-CNN with ResNet-101 [1, 5, 9] pre-trained on
Visual Genome [7] dataset as our object detector. For an
untrimmed video, we divide it into a sequence of segments
with a fixed length (i.e. 32 frames), and then adopt the off-
the-shelf object and action detectors to extract objects and
actions for each segment. For each segment, we select the
top-3 action classes and top-5 object classes with the high-
est confidence score as action nodes and object nodes, re-
spectively. The dimension of input video features is 1024
and the dimension of GloVe [8] vectors is 300. We set the
dimension of all node (three hierarchies of the two graphs)
representations as 384. During training, we set the batch
size to 32 and use Adam as optimizer [3], where the learn-
ing rate is set to 1e−4.

4. Additional Experimental Results
We present the compositional temporal grounding per-

formance of the CTRL [4] and SCDM [12] in Table 2.

5. Most Common Words in Query Sentences
Table 3 and Table 4 show the most common nouns,

verbs, adjectives, adverbs, and prepositions, respectively.

6. Most Common Novel Compositions
We show the most common novel compositions in Ta-

ble 5 and Table 6.

7. Most Common Novel Words
Table 7 and Table 8 show the most common novel words.

8. Additional Examples
Figure 2 and Figure 3 show some more examples in the

novel-composition and novel-word splits of the Charades-
CG dataset. Figure 4 and Figure 5 show some more exam-

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#19

CVPR
#19

CVPR 2022 Submission #19. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Dataset Split Videos Average Video Length Queries Average Query Length

Charades-CG

Training 3555 30.58s 8281 5.93
Novel-Composition 2480 30.70s 3442 6.86
Novel-Word 588 31.26s 703 7.24
Test-Trivial 1689 30.82s 3096 5.96

ActivityNet-CG

Training 9659 116.94s 36724 13.33
Novel-Composition 4202 121.12s 12028 14.78
Novel-Word 2011 124.35s 3944 14.61
Test-Trivial 4775 119.60s 15712 11.31

Table 1. Statistics of Charades-CG and Activity-CG.

Person opens a laptop.

A person is eating food slowly. Person closed the cupboard door.

Person takes a towel from the stove.

Person puts on different clothes.

The guy carries the cat.

A pair of butterfly wings are shown.

The 6 people row vigorously.

A man is seated on an ornate couch.

Two men are putting on gear beside a cliff.

(a) Charades-CG (b) ActivityNet-CG

Figure 1. The distribution of the composition types. Texts inside dashed boxes are query examples for each composition type.

Method Dataset Test-Trivial Novel-Composition Novel-Word

IoU=0.5 IoU=0.7 mIoU IoU=0.5 IoU=0.7 mIoU IoU=0.5 IoU=0.7 mIoU

CTRL Charades-CG 18.53 8.59 22.03 4.62 0.17 11.21 4.22 0.22 10.60
ActivityNet-CG 13.25 4.49 17.51 5.22 1.55 11.21 5.17 1.59 11.17

SCDM Charades-CG 46.63 24.17 42.08 27.73 12.25 30.84 26.20 11.69 27.64
ActivityNet-CG 37.86 22.41 40.09 21.32 9.34 28.52 20.73 8.95 27.46

Table 2. Additional experimental results of CTRL and SCDM on the Charades-CG and ActivityNet-CG datasets.

ples in the novel-composition and novel-word splits of the
Charades-CG dataset.
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Type Most Common Words

Noun
person, door, light, glass, book, shoe, bag, table, food, sandwich,

box, cabinet, chair, laptop, window, cup, shelf, room, clothes, floor,
phone, pillow, water, doorway, closet, picture, bed, refrigerator, blanket, towel

Verb
be, put, open, take, eat, close, sit, hold, turn, run,

throw, drink, start, begin, walk, sneeze, look, laugh, smile, pour,
stand, cook, undress, watch, awaken, wash, dress, fix, read, play

Adjective
open, other, laundry, second, same, front, small, light, nearby, few,

dressed, more, plastic, dirty, first, multiple, undress, large, different, undressed,
several, entryway, close, red, next, oven, folded, full, closed, little

Adverb
away, back, inside, next, also, finally, around, again, when, quickly,
outside, so, down, aside, in, there, where, repeatedly, suddenly, out,

still, nearby, on, twice, slowly, just, very, by, off, later

Preposition
on, in, of, from, off, into, down, at, up, out,

to, with, through, onto, by, as, behind, over, for, under,
around, towards, away, after, across, inside, toward, against, outside, past

Table 3. Most common words of query sentences in the Charades-CG dataset.

Type Most Common Words

Noun
man, woman, people, camera, person, girl, ball, men, hand, water,

boy, screen, front, group, side, dog, hair, lady, field, table,
room, shirt, game, car, video, shot, floor, time, bar, horse

Verb
be, show, see, play, stand, walk, continue, hold, talk, begin,

do, sit, put, speak, use, jump, run, take, go, get,
throw, move, watch, start, rid, wear, hit, look, make, appear

Adjective
several, other, white, large, more, black, young, small, blue, red,

various, little, different, green, close, long, high, same, yellow, many,
old, slow, few, first, right, wooden, ready, pink, big, fourth

Adverb
then, back, around, again, how, as, well, next, together, away,
when, still, outside, all, down, very, after, finally, forth, also,

where, now, up, quickly, over, forward, more, once, just, slowly

Preposition
in, of, on, with, to, up, into, as, down, at,

around, off, by, from, over, out, for, behind, onto, before,
after, along, through, about, across, inside, towards, under, against, between

Table 4. Most common words of query sentences in the ActivityNet-CG dataset.
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Type Novel Compositions

Verb-Noun
throw pillow, open laptop, close laptop, pour coffee, tidy wardrobe,

close window, throw shoe, throw book, throw box, watch car,
watch laptop, wash window, carry towel, throw broom, wash table

Adjective-Noun
different clothes, young woman, few grocery, small closet, same window,

bottom shelf, several drink, small refridgerator, small desk, bottom cabinet,
young guy, different person, more soda, few notebook, near doorway

Preposition-Noun
with towel, in wardrobe, around box, on head, into hallway,

towards table, for work, inside cabinet, under desk, through hall,
outside door, onto wall, above stove, over top, past door way

Noun-Noun
medicine bottle, cupboard door, closet doorknob, kitchen pantry, laptop bag,

work clothes, bathroom shelf, towel rack, wine glass, phone camera,
shower curtain, food bag, detergent cabinet, food dish, kitchen doorway

Verb-Adverb
awaken suddenly, come suddenly, eat slowly, sneeze repeatedly, awaken quickly,

throw repeatedly, undress partially, dress quickly, read intensely, look back,
dress again, smile together, open twice, look over, come out

Table 5. We present 15 common novel compositions of each type in the Charades-CG dataset.

Type Novel Compositions

Verb-Noun
pull row, advertise event, boil noodle, announce winner, pick hose,

wipe boot, see boxer, push rake, extend palm, lower cap,
find friend, park bike, remove plastic, leave chair, fill basket,

Adjective-Noun
live music, cold river, large museum, red vase, different pumpkin,
golden coin, vacant kitchen, crowded stage, dry land, furry dog,

tiny fish, messy bedroom, wooden shelf, strange costume, green plate

Preposition-Noun
towards sea, beside box, behind building, against target, around lady,
after stone, below surface, with certificate, through pipe, in cabinet,

on logo, into store, along ridge, until stop, without teacher

Noun-Noun
hockey tournament, girl referee, sea turtle, kid playground, foot pedal,
princess costume, baby shark, farm building, group selfie, race trail,

fire stick, sugar mixture, stone tunnel, art skill, music book

Verb-Adverb
add directly, sit backward, fly away, move vigorously, work carefully

hit immediately, leave suddenly, plan carefully, remove quickly, groom cleanly,
go speedily, aim accurately, play passionately, kick repeatedly, complete successfully

Table 6. We present 15 common novel compositions of each type in the ActivityNet-CG dataset.

Type Novel Words

Verb talk, bend, prepare, cover, kick, prepare, need, stretch, let, struggle,
slide, toss, encounter, drop, pack, burn, cause, examine, swing, lift

Noun hand, stair, hair, dryer, corner, tissue, stack, cave, basket, dinner,
arm, reflection, remote, tool, coat, sheet, bucket, wrapper, cap, napkin

Adjective old, funny, white, bright, fresh, dusty, hot, sick, canvas, stray,
dim, rampant, original, visible, confused, own, humorous, favorite, loud, short

Adverb somewhere, well, slightly, furiously, periodically, constantly, freshly, intently, really, downstairs,
randomly, thoughtfully, everywhere, continuously, gently, lastly, simultaneously, somewhat, shortly, often

Table 7. We present 20 common novel words of each type in the Charades-CG dataset.
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Type Novel Words

Verb mop, encase, utter, moisten, analyze, encase, cling, radiate, cultivate, disconnect,
retouch, originate, matter, reconstruct, resist, boost, endorse, identify, surpass, consume

Noun bull, camel, pumpkin, dart, shield, carpenter, theory, hunting, washboard, killer,
priest, ox, rapper, hero, donkey, squid, extreme, physician, vacancy, mansion

Adjective solitary, vivid, over, religious, acceptable, exotic, structural, glad, foggy, horrified,
married, sequential, improper, evident, functional, european, hydraulic, strategic, mechanic, early

Adverb accurately, improperly, carelessly, confidently, identically, absolutely, remotely, cautiously, regardless, recently,
anyway, furthermore, inwards, luxuriously, erratically, vividly, poorly, anyhow, whenever, greatly

Table 8. We present 20 common novel words of each type in the ActivityNet-CG dataset.

Ground-Truth 1.0s 7.0s

Query:A person is closing the window in the dining room.

Ground-Truth 12.7s 19.9s

Query: The person takes a bag from the bottomcabinet.

Ground-Truth 14.9s 21.9s

Query: The person closes a cupboard door.

Ground-Truth 23.3s 36.5s

Query: The person washes the mirror with a towel.

Ground-Truth 16.0s 21.8s

Query:Another person suddenly comes running through.

Figure 2. Examples in the novel-composition split of the Charades-CG dataset.
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Ground-Truth 2.7s 9.4s

Query: Person puts the white pillow on the bed.

Ground-Truth 6.0s 19.2s

Query: Person they begin sneezinguncontrollably.

Ground-Truth 2.6s 8.4s

Query: The person takes a tissue froma tissue box.

Ground-Truth 22.6s 30.3s

Query: The person was standing up readinga book, then bent down.

Figure 3. Examples in the novel-word split of the Charades-CG dataset.
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Ground-Truth 64.08s 83.53s

Query: They fill a basket with hair products.

Ground-Truth 10.99s 15.87s

Query:Aman is lookingat a red vase.

Ground-Truth 53.84s 79.56s

Query: Then, the person shows to wrap a square gift and made a paper flower.

Ground-Truth 0s 70.43s

Query:Aman and a woman are walking with their surfboards towards the sea.

Ground-Truth 8.29s 31.23s

Query: The woman then gets on knees and sits backwards.

Figure 4. Examples in the novel-composition split of the ActivityNet-CG dataset.
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Ground-Truth 85.45s 138.44s

Query: The man adjusts some of the gears to disconnect the brakes.

Ground-Truth 12.2s 22.56s

Query:An ox is held by a trainer in a city plaza

Ground-Truth 102.62s 119.38s

Query: He begins to attach a dummy while the woman looks horrified.

Ground-Truth 175.58s 206.57s

Query: The man in the newscast setting talks to the reporter remotely.

Figure 5. Examples in the novel-word split of the ActivityNet-CG dataset.
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