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The supplementary material is organized as follows:
Sec. 1 and the demo video on our project page1 provide two application scenarios of our method, including time-lapse

outpainting and creative editing with an interactive interface.
Sec. 2 provides additional visual results.
Sec. 3 provides more comparison and discussion on alternative solutions.
Sec. 4 provides additional ablation experimental results and analyses.
Sec. 5 provides the details of data preprocessing.
Sec. 6 provides the architectures of components of CTO-GAN and additional experimental details.

1. Applications
1.1. Background Interpolation and Time-lapse Outpainting

Figure 1. Interpolation results of background semantic layouts and corrresponding outpainted images.

1https://ddlee-cn.github.io/cto-gan
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Based on VAE, our method is able to sample a series of latent vectors from a continuous latent space, making it possible
to interpolate the background semantic layouts as well as contents. In Fig. 1, we show the interpolated background semantic
layouts and corresponding outpainted images. As can be seen, the generated semantic layouts and outpainted images trans-
form smoothly, indicating that our method learns a smooth and meaningful latent space for the background semantics. In
our demo video, we include more examples and create animated GIFs from the interpolated results. Through interpolating
latent vectors, our method is capable of synthesizing a smooth transition of background contents across time. We name this
application as “time-lapse outpainting”.

1.2. Creative Editing with Interactive Interface

Figure 2. The interactive interface for real-time creative editing of outpainted images.

As mentioned in the paper, one of the benefits of introducing the semantic layout as a bridge is interpretability, since it
provides an explicit description for the semantic reasoning result. Thanks to its bridging role, we can control the outpainted
image both semantically and spatially through editing the generated semantic layouts. As shown in Fig. 2 and our demo
video, we build an interactive application, which enables real-time creative editing for the outpainted images. We show how
a user can choose a favorable result from the set of generated semantic layouts, and outpaint the input image with the chosen
semantic layout as guidance. We also demonstrate how a user can add, move, or change the background contents of the
outpainted image by editing its semantic layout on the canvas. Our implementation of the GUI builds upon MaskGAN2 [8]
and SEAN3 [22].

2https://github.com/switchablenorms/CelebAMask-HQ
3https://github.com/ZPdesu/SEAN
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2. Additional Visual Results
In Fig. 3 and Fig. 4, we show additional visual results and qualitative comparison with existing methods. As can be seen,

our method generates coherent and diverse background contents, outperforming comparison methods.

Figure 3. Additional visual results generated by our method. For each example, we show the semantic layouts (in red dashed boxes) and
the outpainted images (in red boxes) produced by our method after the input image and the ground truth image, respectively.
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Figure 4. Additional qualitative comparison with existing methods. For each example, from top to bottom, from left to right, the pictures
are: the input image, results of GatedConv [19], Boundless [7], results of MIO [20] (in blue box), results of PIC [21] (in purple box),
results of DSI [13] (in yellow box) and results of our method (in red box).



3. More Comparison with Alternative Solutions

FID ↓ LPIPS ↓ mIoU ↑ Accu ↑
GT Foreground→pix2pix→SPADE 41.81 0.471 23.3 35.2

DeepLabV2→pix2pix→SPADE 43.69 0.520 18.9 26.8
pix2pixHD 45.97 0.473 22.7 33.6

Ours 27.34 0.371 31.5 47.0

Table 1. Comparisons with a 3-stage solution and image-to-image translation method.

Comparison with context modeling methods. Context modeling methods like [14] may play a role in a cascaded 3-stage
solution, i.e., “foreground recognition (image-to-layout) → context modeling (layout-to-layout) → background synthesis
(layout-to-image)”. However, as explored in [17, 23], contextual bias plays a key role in image recognition methods. In the
semantic segmentation task, the mIoU for the foreground objects of DeepLabV2 [2] on the COCO dataset drops from 46.1
to 39.8. Consequently, the 3-stage solution limits itself because of the performance drop in recognizing foregrounds without
involving their context. We validate this argument in Table 1, where pix2pix [5] (a strong baseline in [14]) is used for context
modeling and SPADE [12] is used for image synthesis. Instead of predicting the pixel-level classes for the foreground objects,
we relate the latent representations of foreground and background contents in a joint embedding space through contrastive
learning.
Comparison with image-to-image translation methods. Further, we supplement the comparison results with pix2pixHD
[16], where our method still has a clear advantage. Image-to-image translation methods often assume a pixel-to-pixel align-
ment between the source and target images, which is violated in the task of contextual outpainting.

4. Additional Ablation Experiments and Analyses

FID ↓ LPIPS ↓ mIoU ↑ Accu ↑
Ours 27.34 0.371 31.5 47.0

increase K 28.46 0.366 30.7 45.4
decrease K 29.02 0.372 30.0 44.1

MLP proj. head 29.90 0.375 30.4 46.2
increase latent size 29.11 0.389 29.6 44.7
image-level contra. 36.77 0.397 25.5 38.5

Ours w/ semantic dis. 29.10 0.388 30.0 45.2

Table 2. Additional ablation experiments on the design choices of contrastive regularization. MLP proj. head indicates adding an MLP
head after pooling for learned representations. Image-level contra. denotes the strategy of applying contrastive regularization at the image
level instead of the object level. Semantic dis. denotes the semantic segmentation discriminator proposed in [15].

Additional ablation experiments on the design choices of contrastive regularization. As listed in Table 2, we investigate
the influences of different design choices of contrastive regularization. We find that tuning hyperparameters (increasing or
decreasing the memory bank size K), adding additional MLP layers, and increasing latent vector size achieve comparable
performance with the original design, demonstrating the robustness of the regularization effect. Furthermore, we conduct an
experiment with an image-level contrastive regularization strategy, in which we concatenate the foreground and background
representations together as a description for the entire image and enforce contrastive relationships across these image-level
representations. The image-level strategy suffers from the noise caused by different appearances of positive samples, resulting
in poor performance. This result also validates the benefit of utilizing the semantic layout as bridging information, which
narrows the appearance gap at the semantic level.
Additional ablation experiment on the context-aware discriminator. Our context-aware discriminator shares similar
merits with a recent work on augmenting the ability of the discriminator for image-to-image translation [15]. However,
the discriminator in [15] serves as an image segmentation network, aiming at judging the alignment between the generated
images and the provided condition signal. As listed in Table 2, replacing the context-aware discriminator in our method with
the one in [15] hurts performance since it provides noisy feedback when the foreground objects remain untouched.
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Figure 5. Additional analyses. (a) Visual results of unconditional background generation. (b) Visualization of the score map from the
context-aware discriminator.

From contextual outpainting to unconditional background generation. Our method degenerates to unconditional back-
ground image generation when there is no foreground content provided. Under this scenario, our method is able to generate
meaningful background contents, as shown in Fig. 5(a).
Visualization of the score map from the context-aware discriminator. We illustrate the score map predicted by the context-
aware discriminator in Fig. 5(b). As expected, the context-aware discriminator learns to detect the generated background area,
making it harder to be fooled by the generator and thus resulting in better visual quality.

5. Data Preprocessing

Sbg = Fseg(I′ bg)I Sgt I′ bg = Finpt(Ibg)IbgIfg S+
bg

Figure 6. From left to right: the ground truth image I , the ground truth semantic layout Sgt (with both foreground and background
annotations), the input foreground image Ifg , the background image Ibg , the inpainted background image I ′bg , the pseudo background-
only semantic layout Sbg , the background-only semantic layout S+

bg from the other image inside the same image group. We also show the
ground truth image of S+

bg for reference.

The COCO-Stuff dataset4,5 provides pixel-level annotations (Sgt in Fig. 6) for both foreground and background classes.
We preprocess the dataset in the following steps. As shown in Fig. 6, we perform an inpainting operation Finpt to fill the
foreground region with background pixels, obtaining I ′bg . We adopt the PatchMatch inpainting algorithm [1]. Then, we
inference a pre-trained DeepLabV2 [2] model as Fseg to get the background semantic layout with only background classes
(Sbg). Compared to the ground truth semantic layout Sgt, Sbg only contains the background semantics, which we set as the
traning target in the semantic reasoning stage. These background semantic layouts are also used as the conditional signal for
training the image generator in the content generation stage. To reorganize the images in the COCO-Stuff dataset, we simply
group them according to their foreground classes, resulting in 11,296 groups. As shown in the last two items of Fig. 6, we
assume the images inside the same group share similar background semantics (Sbg and S+

bg). In the COCO-stuff dataset, the
foreground (thing) and background (stuff) definitions are not always consistent across images. For indoor scenes, we find it
hard to select saliency objects as the remaining foreground. Thus, we focus the outdoor scenes.

4https://cocodataset.org/
5https://github.com/nightrome/cocostuff
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6. Network Architectures of CTO-GAN and Additional Experimental Details
6.1. The Semantic Reasoning Stage
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Figure 7. Detailed architectures of components in the semantic reasoning stage. We illustrate the basic blocks in the format of
BlockName(input channel, output channel). ResStartBlock, ResBlock, ResDownBlock, ResUpBlock, and Output are the
same as in PIC [21]. ch∗ denote the base channel sizes of convolution layers, and ncls is the number of semantic classes.

The design of the foreground encoder Efg , the background encoder Ebg , and the layout generator Gbg in the semantic
reasoning stage follows PIC [21]. As shown in Fig. 7, the foreground representation hfg and the background representation
h+ (or h−) are obtained by global pooling before the latent vectors zfg and zbg . Following PIC, we allow a skip connection
between Efg and Gbg via an intermediate feature fm, which is summed with the feature tensor in Gbg . We predict the
possible semantic layout Ŝbg at 4 scales. The semantic layout prediction of the coarser scale is concatenated for learning
residuals in the finer scale. We set the base channel size of Efg and Ebg as ch1 = 64 and that of Gbg as ch2 = 128. The
latent vector size chz is set to 128. The discriminator for the generated semantic layout in this stage is similar to the one
in Fig. 8(b), but with the semantic layout as the only input. The loss function for training the semantic reasoning stage of
CTO-GAN is

LSR = LCMC + λ1LKL + λ2(LCE + Lfocal) + λ3LGAN−layout, (1)

where LCMC is the proposed cross-modal contrastive loss, LKL the KL divergence regularization term, LCE the cross-
entropy loss, Lfocal the focal loss [9], LGAN−layout the least square GAN loss [10] for semantic layout, and λ∗ are balancing
parameters. We set λ1 = 200, λ2 = 5, and λ3 = 1 across all experiments.

6.2. The Content Generation Stage

As illustrated in Fig. 8(a), the content generation stage of CTO-GAN is inspired by SPADE [12]. We add a UNet generator
[5] to aggregate the features of the foreground image and upsampled background features to obtain the outpainted image Î .
The base channel size ch3 of Gimg is set to 64. The image discriminator Dimg follows the multi-scale patch discriminator
in pix2pixHD [16], but with the projected features of Sbg as conditional input, as shown in Fig. 8(b). We incorporate the
discriminator at 2 scales with a base channel size ch4 of 64. The architecture of the context-aware discriminator follows
DeepLabV2 [2] with a base channel size of 16. The loss function for training the content generation stage of CTO-GAN is

LCG = LRecon + λ4LFM + λ5LV GG + λ6LGAN−det + λ7LGAN−img, (2)

where LRecon is the `1 distance, LFM the distance of features from Dimg , LV GG the feature distance of the VGG network,
LGAN−det the BCE loss of the proposed context-aware discriminator, LGAN−img the least square GAN loss for image, and
λ∗ are balancing parameters. We set λ4 = 0.2, λ5 = 0.4, λ6 = 0.01, and λ7 = 0.1 across all experiments.
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Figure 8. Detailed architectures of components in the content generation stage. We illustrate the convolution layer in the format of
Conv(input channel, output channel, kernel size, stride). SPADEBlock follows SPADE [12], and UNet follows the “UNet”
generator in Pix2pix [5]. Up denotes the nearest neighbor upsample operation. LReLU denotes the Leaky ReLU activation function [18].

6.3. Experimental Details

We apply spectral normalization [11] to all the convolutional layers and sync batch normalization in the basic blocks.
Following PIC [21], we regularize the learned distribution of background semantic layouts to the normal distribution with
an adaptive variance according to the mask size. The τ in the CMC loss is set to 0.07 following MoCo [4]. All learnable
parameters are initialized with the xavier initialization [3] and optimized by the Adam optimizer [6] with β1 = 0 and
β2 = 0.999 at a fixed learning rate of 1 × 10−4. The batch size is 64 for the semantic reasoning stage and 8 for the content
generation stage. We train the two stages over 200K iterations in parallel.

For comparison methods, we use the official implementation of GatedConv6, MIO7, PIC8, and DSI9. We use a third-
party implementation10 of Boundless. For MIO, we increase the input size from 128 × 128 to 256 × 256 and increase the
network capacity accordingly. We retrain these methods on the COCO-Stuff dataset with default hyperparameters. We use a
third-party implementation11 of DeepLabV2 for data preprocessing and semantic coherence evaluation.

6https://github.com/JiahuiYu/generative_inpainting
7https://github.com/owenzlz/DiverseOutpaint
8https://github.com/lyndonzheng/Pluralistic-Inpainting
9https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting

10https://github.com/recong/Boundless-in-Pytorch
11https://github.com/kazuto1011/deeplab-pytorch
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