
Supplementary Material: Cross-domain Few-shot Learning
with Task-specific Adapters

Wei-Hong Li, Xialei Liu*, and Hakan Bilen
VICO Group, University of Edinburgh, United Kingdom

github.com/VICO-UoE/URL

1. Dataset

Meta-Dataset [22] is a few-shot classification benchmark
that initially consists of ten datasets: ILSVRC 2012 [20]
(ImageNet), Omniglot [11], FGVC-Aircraft [17] (Aircraft),
CUB-200-2011 [23] (Birds), Describable Textures [4]
(DTD), QuickDraw [9], FGVCx Fungi [3] (Fungi), VGG
Flower [18] (Flower), Traffic Signs [8] and MSCOCO [14]
then further expands with MNIST [12], CIFAR-10 [10]
and CIFAR-100 [10]. We follow the standard procedure
in [22] and consider both the ‘Training on all datasets’ (multi-
domain learning) and ‘Training on ImageNet only’ (single-
domain learning) settings. In ‘Training on all datasets’ set-
ting, we follow the standard procedure and use the first eight
datasets for meta-training, in which each dataset is further
divided into train, validation and test set with disjoint classes.
While the evaluation within these datasets is used to measure
the generalization ability in the seen domains, the remaining
five datasets are reserved as unseen domains in meta-test
for measuring the cross-domain generalization ability. In
‘Training on ImageNet only’ setting, we follow the standard
procedure and only use train split of ImageNet for meta-
training. The evaluation of models is in the test split of
ImageNet and the rest 12 datasets which are reserved as
unseen domains in meta-test. As in [22], we evaluate our
method on 600 randomly sampled tasks for each dataset
with varying number of ways and shots, and report average
accuracy and 95% confidence score in all experiments.

2. Implementation details

In this section, we explain the details of task-agnostic
(feature extractor) learning and then task-specific (adapter)
learning.

2.1. Task-agnostic learning

Here we consider learning the parameters of the feature
extractor from either multiple or single domains.

*Xialei Liu is the corresponding author.

Multi-domain learning. When we learn the feature ex-
tractor from multiple domains, we consider two cases. In the
first case, which we call vanilla multiple domain learning (or
MDL), we design a deep network where we share all the lay-
ers across all domains and have domain-specific classifiers.
This setting corresponds to Eq (1) in the main text. Second
we consider a variant of MDL, URL [13] which also involves
learning a single network with shared and domain-specific
layers as such, however, it is learned by distilling information
from multiple domain-specific networks as described [13].
In these two settings, as in [2,6,13], we build MDL and URL
on the ResNet-18 [7] backbone and use 84× 84 image size.

For optimization of both MDL and URL, we follow the
same protocol in [13], use SGD optimizer and cosine anneal-
ing with a weight decay of 7 × 10−4 for learning 240,000
iterations. The learning rate is 0.03 and the annealing fre-
quency is 48,000. As in [13], the batch size for ImageNet is
64 × 7 and is 64 for the other 7 datasets. We refer readers
to [13] for more details.
Single domain learning (SDL). We also evaluate our
method on a feature extractor that is learned on single do-
main which we call SDL. Here we evaluate our method on
two backbones, ResNet-18 (SDL-ResNet-18) and ResNet34
(SDL-ResNet-34).

Backbone learning rate batch size annealing freq. max. iter.

SDL-ResNet-18 3× 10−2 64 48,000 480,000
SDL-ResNet-34 3× 10−2 128 48,000 480,000

Table 1. Training hyper-parameters of single domain learning.

SDL-ResNet-18. Following [6, 13, 22], we train a ResNet-
18 on the train split of ImageNet and use 84 × 84 image
size, which is denoted as SDL-ResNet-18. For optimization,
we follow the training protocol in [6, 13]. Specifically, we
use SGD optimizer and cosine annealing for all experiments
with a momentum of 0.9 and a weight decay of 7 × 10−4.
Some other hyperparameters are shown in Tab. 1 as in [6,
13]. To regularize training, we also use the exact same data
augmentations as in [6, 13], e.g. random crops and random
color augmentations.

1



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

MDL 53.4± 1.1 93.8± 0.4 86.6± 0.5 78.6± 0.8 71.4± 0.7 81.5± 0.6 61.9± 1.0 88.7± 0.6 51.0± 1.0 49.7± 1.1 94.4± 0.3 66.7± 0.8 53.6± 1.0
Ours (MDL) 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1

URL [13] 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.2 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.6± 1.0
Ours (URL) 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

SDL-ResNet-18 55.8± 1.0 67.4± 1.2 49.5± 0.9 71.2± 0.9 73.0± 0.6 53.9± 1.0 41.6± 1.0 87.0± 0.6 47.4± 1.1 53.5± 1.0 78.1± 0.7 67.3± 0.8 56.6± 0.9
Ours (SDL-ResNet-18) 59.5± 1.1 78.2± 1.2 72.2± 1.0 74.9± 0.9 77.3± 0.7 67.6± 0.9 44.7± 1.0 90.9± 0.6 82.5± 0.8 59.0± 1.0 93.9± 0.6 82.1± 0.7 70.7± 0.9

SDL-ResNet-34 62.2± 1.1 72.8± 1.1 62.9± 0.9 79.6± 0.8 75.6± 0.6 64.5± 0.8 47.4± 1.1 90.4± 0.6 54.8± 1.0 56.1± 1.0 79.3± 0.6 83.0± 0.6 74.8± 0.8
Ours (SDL-ResNet-34) 63.7± 1.0 82.6± 1.1 80.1± 1.0 83.4± 0.8 79.6± 0.7 71.0± 0.8 51.4± 1.2 94.0± 0.5 81.7± 0.9 61.7± 0.9 94.6± 0.5 86.0± 0.6 78.3± 0.8

Table 2. Results of attaching residual adapters to different baselines. ‘SDL-ResNet-18’ is the single domain model with ResNet-18 backbone
pretrained on ImageNet. ‘SDL-ResNet-34’ is the single domain model with ResNet-34 backbone pretrained on ImageNet. ‘MDL’ is a
vanilla Multi-Domain Learning (MDL) model trained on eight seen datasets jointly.

Test Dataset classifier Aux-Net serial or M or
β #params ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100or Ad parallel CW

NCC NCC - - - % - 57.0± 1.1 94.4± 0.4 88.0± 0.5 80.3± 0.7 74.6± 0.7 81.8± 0.6 66.2± 0.9 91.5± 0.5 49.8± 1.1 54.1± 1.0 91.1± 0.4 70.6± 0.7 59.1± 1.0

MD MD - - - % - 53.9± 1.0 93.8± 0.5 87.6± 0.5 78.3± 0.7 73.7± 0.7 80.9± 0.7 57.7± 0.9 89.7± 0.6 62.2± 1.1 48.5± 1.0 95.1± 0.4 68.9± 0.8 60.0± 0.9

LR LR - - - % - 56.0± 1.1 93.7± 0.5 88.3± 0.6 79.7± 0.8 74.7± 0.7 80.0± 0.7 62.1± 0.8 91.1± 0.5 59.7± 1.1 51.2± 1.1 93.5± 0.5 73.1± 0.8 60.1± 1.1

SVM SVM - - - % - 54.5± 1.1 94.3± 0.5 87.7± 0.5 78.1± 0.8 73.8± 0.8 80.0± 0.6 58.5± 0.9 91.4± 0.6 65.7± 1.2 50.5± 1.0 95.4± 0.4 72.0± 0.8 60.5± 1.1

Softmax Softmax - - - % - 42.2± 1.0 85.3± 0.7 71.9± 0.8 59.6± 1.0 62.0± 0.8 61.2± 1.0 37.3± 0.9 66.7± 1.0 51.4± 1.1 48.2± 1.1 93.5± 0.5 70.4± 0.8 59.3± 1.0

KNN KNN - - - % - 48.1± 1.1 94.1± 0.4 84.5± 0.6 70.7± 0.8 65.9± 0.8 74.8± 0.7 53.5± 0.9 86.0± 0.6 56.9± 1.2 44.7± 1.1 91.4± 0.5 60.3± 0.8 49.4± 1.0

PA NCC - - - ! - 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.1 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.5± 1.0

PA Softmax - - - ! - 53.4± 1.2 92.7± 0.5 85.7± 0.6 76.1± 0.9 73.9± 0.8 76.5± 0.8 51.1± 0.9 86.9± 0.7 52.5± 1.1 48.2± 1.1 94.3± 0.4 69.7± 0.8 60.4± 1.0

Finetune NCC - - - % - 55.9± 1.2 94.0± 0.5 87.3± 0.6 77.8± 0.9 76.8± 0.8 75.3± 0.9 57.6± 1.1 91.5± 0.6 86.1± 0.9 53.1± 1.2 96.8± 0.4 80.9± 0.8 65.9± 1.1

Finetune Softmax - - - % - 48.4± 1.2 92.2± 0.6 81.6± 0.9 70.3± 1.3 72.0± 0.9 73.5± 1.0 44.2± 1.1 90.3± 0.7 65.5± 1.4 41.0± 1.3 96.3± 0.4 71.6± 1.0 53.8± 1.4

Aux-S-CW NCC Aux-Net serial CW % - 54.6± 1.1 93.5± 0.5 86.6± 0.5 78.6± 0.8 71.5± 0.7 79.3± 0.6 66.0± 0.9 87.6± 0.6 43.3± 0.9 49.1± 1.0 87.9± 0.5 62.8± 0.8 51.5± 1.0

Aux-R-CW NCC Aux-Net residual CW % - 56.1± 1.1 94.2± 0.4 88.4± 0.5 80.6± 0.7 74.9± 0.6 82.0± 0.6 66.4± 0.9 91.6± 0.5 48.5± 1.0 53.5± 1.0 90.8± 0.5 70.2± 0.8 59.7± 1.0

Aux-S-CW MD Aux-Net serial CW % - 55.1± 1.1 93.8± 0.5 86.8± 0.5 77.4± 0.8 73.2± 0.8 79.9± 0.7 57.4± 0.9 88.1± 0.7 58.4± 1.1 50.1± 1.1 92.7± 0.5 66.5± 0.8 55.7± 1.1

Aux-R-CW MD Aux-Net residual CW % - 54.8± 1.1 93.8± 0.5 87.4± 0.5 78.2± 0.7 73.4± 0.7 81.1± 0.7 58.8± 0.9 90.1± 0.5 63.6± 1.2 48.5± 1.1 94.8± 0.4 69.6± 0.8 60.6± 0.9

Ad-S-CW NCC Ad serial CW % 0.06% 56.8± 1.1 94.8± 0.4 89.3± 0.5 80.7± 0.7 74.5± 0.7 81.6± 0.6 65.8± 0.9 91.3± 0.5 73.9± 1.1 53.6± 1.1 95.7± 0.4 78.4± 0.7 64.3± 1.0

Ad-R-CW NCC Ad residual CW % 1.57% 57.6± 1.1 94.7± 0.4 89.0± 0.4 81.2± 0.8 75.2± 0.7 81.5± 0.6 65.4± 0.8 91.8± 0.5 79.2± 1.1 54.7± 1.1 96.4± 0.4 79.5± 0.8 67.4± 1.0

Ad-S-M NCC Ad serial M % 12.50% 56.2± 1.1 94.4± 0.4 89.1± 0.5 80.6± 0.7 75.8± 0.7 81.6± 0.6 67.1± 0.9 92.1± 0.4 67.6± 1.2 54.8± 1.1 95.9± 0.4 78.9± 0.7 66.6± 1.1

Ad-R-M NCC Ad residual M % 10.93% 57.3± 1.1 94.9± 0.4 88.9± 0.5 81.0± 0.7 76.7± 0.7 80.6± 0.6 65.4± 0.9 91.4± 0.5 82.6± 1.0 55.0± 1.1 96.6± 0.4 82.1± 0.7 66.4± 1.1

Ad-R-CW-PA NCC Ad residual CW ! 3.91% 58.6± 1.1 94.5± 0.4 90.0± 0.4 80.5± 0.8 77.6± 0.7 81.9± 0.6 67.0± 0.9 92.2± 0.5 80.2± 0.9 57.2± 1.0 96.1± 0.4 81.5± 0.8 71.4± 0.9

Ad-R-M-PA NCC Ad residual M ! 13.27% 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 3. Comparisons to methods that learn classifiers and model adaptation methods during meta-test stage based on URL model. NCC,
MD, LR, SVM, Softmax, KNN denote nearest centroid classifier, Mahalanobis distance, logistic regression, support vector machines,
softmax classifier and k-nearest neighbors classifier respectively. PA indicates pre-classifier alignment. ‘Aux-Net or Ad’ indicates using
Auxiliary Network to predict α or attaching adapter α directly. ‘M or CW’ means using matrix multiplication or channel-wise scaling
adapters. ’S’ and ’R’ denote serial adapter and residual adapter, respectively. ‘β’ indicates using the pre-classifier adaptation. Mean accuracy,
95% confidence interval are reported. The first eight datasets are seen during training and the last five datasets are unseen and used for test
only.

SDL-ResNet-34. We also apply our method to the single
domain learning model with ResNet-34 backbone learned
on ImageNet only as in [5]. We follow [5] and use higher-
resolution (224× 224) images for meta-training and meta-
testing. For optimization, we follow the training protocol as
in [6,13]. Specifically, we use SGD optimizer and cosine an-
nealing with a momentum of 0.9, a weight decay of 1×10−4

with a batch size of 128. Other hyperparameters are the same
as in SDL-ResNet-18 and are shown in Tab. 1. To regularize
training, we also use the exact same data augmentations as
in [6, 13], e.g. random crops and random color augmenta-
tions with an additional stage that randomly downsamples
and upsamples images as in [5].

2.2. Task-specific learning

Attaching and learning adapters. For the optimization
of the adaptation parameters α which is attached directly and
learned on support set and the pre-classifier adaptation β, we
follow the optimization strategy in [13], initialize β as an
identity matrix and optimize both α and β for 40 iterations
using Adadelta [24] as optimizer. The learning rate of β
is 0.1 for first eight datasets and 1 for the last five datasets

as in [13] and we set the learning rate of α as half of the
learning rate of β, i.e. 0.05 for the first eight datasets and 0.5
for the last five datasets. Note that, we learn α and β on a
per-task basis using the task’s support set during meta-test.
That is, α and β are not re-used across the test tasks drawn
from Dt.
Predicting rα. In case of modulating α with the auxiliary
network, we follow the auxiliary training protocols in [2].
We train for 10K episodes to optimize the task encoder using
Adam with a learning rate of 1 × 10−5 on eight training
domains in meta-train. We validate every 5K iterations to
save the best model for test.

3. More results
3.1. Our method with different feature extractors

Tab. 2 shows the results of our method (the proposed
residual adapters in matrix form) when incorporated to dif-
ferent feature extractors, single domain model with ResNet-
18 backbone (SDL-ResNet-18) pre-trained on ImageNet,
single domain model with ResNet-34 (SDL-ResNet-34) pre-
trained on ImageNet, vanilla multi-domain learning (MDL)



Varying-Way Five-Shot Five-Way One-Shot

Test Dataset Simple SUR URT URL Ours Simple SUR URT URL OursCNAPS [2] [6] [15] [13] CNAPS [2] [6] [15] [13]

ImageNet 47.2± 1.0 46.7± 1.0 48.6± 1.0 49.4± 1.0 48.3± 1.0 42.6± 0.9 40.7± 1.0 47.4± 1.0 49.6± 1.1 48.0± 1.0
Omniglot 95.1± 0.3 95.8± 0.3 96.0± 0.3 96.0± 0.3 96.8± 0.3 93.1± 0.5 93.0± 0.7 95.6± 0.5 95.8± 0.5 96.3± 0.4
Aircraft 74.6± 0.6 82.1± 0.6 81.2± 0.6 84.8± 0.5 85.5± 0.5 65.8± 0.9 67.1± 1.4 77.9± 0.9 79.6± 0.9 79.6± 0.9
Birds 69.6± 0.7 62.8± 0.9 71.2± 0.7 76.0± 0.6 76.6± 0.6 67.9± 0.9 59.2± 1.0 70.9± 0.9 74.9± 0.9 74.5± 0.9

Textures 57.5± 0.7 60.2± 0.7 65.2± 0.7 69.1± 0.6 68.3± 0.7 42.2± 0.8 42.5± 0.8 49.4± 0.9 53.6± 0.9 54.5± 0.9
Quick Draw 70.9± 0.6 79.0± 0.5 79.2± 0.5 78.2± 0.5 77.9± 0.6 70.5± 0.9 79.8± 0.9 79.6± 0.9 79.0± 0.8 79.3± 0.9

Fungi 50.3± 1.0 66.5± 0.8 66.9± 0.9 70.0± 0.8 70.4± 0.8 58.3± 1.1 64.8± 1.1 71.0± 1.0 75.2± 1.0 75.3± 1.0
VGG Flower 86.5± 0.4 76.9± 0.6 82.4± 0.5 89.3± 0.4 89.5± 0.4 79.9± 0.7 65.0± 1.0 72.7± 0.0 79.9± 0.8 80.3± 0.8

Traffic Sign 55.2± 0.8 44.9± 0.9 45.1± 0.9 57.5± 0.8 72.3± 0.6 55.3± 0.9 44.6± 0.9 52.7± 0.9 57.9± 0.9 57.2± 1.0
MSCOCO 49.2± 0.8 48.1± 0.9 52.3± 0.9 56.1± 0.8 56.0± 0.8 48.8± 0.9 47.8± 1.1 56.9± 1.1 59.2± 1.0 59.9± 1.0

MNIST 88.9± 0.4 90.1± 0.4 86.5± 0.5 89.7± 0.4 92.5± 0.4 80.1± 0.9 77.1± 0.9 75.6± 0.9 78.7± 0.9 80.1± 0.9
CIFAR-10 66.1± 0.7 50.3± 1.0 61.4± 0.7 66.0± 0.7 72.0± 0.7 50.3± 0.9 35.8± 0.8 47.3± 0.9 54.7± 0.9 55.8± 0.9
CIFAR-100 53.8± 0.9 46.4± 0.9 52.5± 0.9 57.0± 0.9 64.1± 0.8 53.8± 0.9 42.9± 1.0 54.9± 1.1 61.8± 1.0 63.7± 1.0

Average Seen 69.0 71.2 73.8 76.6 76.7 65.0 64.0 70.6 73.4 73.5
Average Unseen 62.6 56.0 59.6 65.2 71.4 57.7 49.6 57.5 62.4 63.4

Average All 66.5 65.4 68.3 72.2 74.6 62.2 58.5 65.5 69.2 69.6

Average Rank 4.1 3.9 3.4 2.1 1.5 3.8 4.5 3.3 1.7 1.7

Table 4. Results of Varying-Way Five-Shot and Five-Way One-Shot scenarios. Mean accuracy, 95% confidence interval are reported.

Test Dataset CNAPS [19] Simple CNAPS [2] TransductiveCNAPS [1] SUR [6] URT [15] FLUTE [21] tri-M [16] URL [13] Ours

ImageNet 50.8± 1.1 56.5± 1.1 57.9± 1.1 54.5± 1.1 55.0± 1.1 51.8± 1.1 58.6± 1.0 57.5± 1.1 57.4± 1.1
Omniglot 91.7± 0.5 91.9± 0.6 94.3± 0.4 93.0± 0.5 93.3± 0.5 93.2± 0.5 92.0± 0.6 94.5± 0.4 95.0± 0.4
Aircraft 83.7± 0.6 83.8± 0.6 84.7± 0.5 84.3± 0.5 84.5± 0.6 87.2± 0.5 82.8± 0.7 88.6± 0.5 89.3± 0.4
Birds 73.6± 0.9 76.1± 0.9 78.8± 0.7 70.4± 1.1 75.8± 0.8 79.2± 0.8 75.3± 0.8 80.5± 0.7 81.4± 0.7

Textures 59.5± 0.7 70.0± 0.8 66.2± 0.8 70.5± 0.7 70.6± 0.7 68.8± 0.8 71.2± 0.8 76.2± 0.7 76.7± 0.7
Quick Draw 74.7± 0.8 78.3± 0.7 77.9± 0.6 81.6± 0.6 82.1± 0.6 79.5± 0.7 77.3± 0.7 81.9± 0.6 82.0± 0.6

Fungi 50.2± 1.1 49.1± 1.2 48.9± 1.2 65.0± 1.0 63.7± 1.0 58.1± 1.1 48.5± 1.0 68.8± 0.9 67.4± 1.0
VGG Flower 88.9± 0.5 91.3± 0.6 92.3± 0.4 82.2± 0.8 88.3± 0.6 91.6± 0.6 90.5± 0.5 92.1± 0.5 92.2± 0.5

Traffic Sign 56.5± 1.1 59.2± 1.0 59.7± 1.1 49.8± 1.1 50.1± 1.1 58.4± 1.1 63.0± 1.0 63.3± 1.2 83.5± 0.9
MSCOCO 39.4± 1.0 42.4± 1.1 42.5± 1.1 49.4± 1.1 48.9± 1.1 50.0± 1.0 52.8± 1.1 54.0± 1.0 55.8± 1.1

MNIST - 94.3± 0.4 94.7± 0.3 94.9± 0.4 90.5± 0.4 95.6± 0.5 96.2± 0.3 94.5± 0.5 96.7± 0.4
CIFAR-10 - 72.0± 0.8 73.6± 0.7 64.2± 0.9 65.1± 0.8 78.6± 0.7 75.4± 0.8 71.9± 0.7 80.6± 0.8

CIFAR-100 - 60.9± 1.1 61.8± 1.0 57.1± 1.1 57.2± 1.0 67.1± 1.0 62.0± 1.0 62.6± 1.0 69.6± 1.0

Average Seen 71.6 74.6 75.1 75.2 76.7 76.2 74.5 80.0 80.2
Average Unseen - 65.8 66.5 63.1 62.4 69.9 69.9 69.3 77.2

Average All - 71.2 71.8 70.5 71.2 73.8 72.7 75.9 79.0

Average Rank - 6.3 4.9 5.8 5.7 4.3 4.8 2.7 1.5

Table 5. Comparison state-of-the-art methods on Meta-Dataset (using a multi-domain feature extractor of [13]). Mean accuracy, 95%
confidence interval are reported. The first eight datasets are seen during training and the last five datasets are unseen and used for test only.

and URL [13]. We see that attaching and learning residual
adapters can significantly improve the performance on all do-
mains over SDL-ResNet-18, SDL-ResNet-34 and MDL and
obtain better performance on most domains over URL (11
out of 13 domains). This strongly indicates that our method
can efficiently adapt the model for unseen categories and
domains with few support samples while being agnostic to
the feature extractor with different backbone and resolution
of images.

3.2. Task-specific parameterizations

In Tab. 3, we report additional 95% confidence interval
of each dataset to the main paper for the comparison of
different rα choices based on the URL model. The first eight
datasets are seen during training and the last five datasets are
unseen and used for test only. We can see that the confidence
intervals for different methods have marginal differences.

3.3. Varying-way 5-shot and 5-way-1-shot

In the main paper, we only report the average accuracy
of Varying-Way Five-Shot and Five-Way One-Shot scenar-
ios due to limited space, and detailed results are depicted
in Tab. 4. In the table, we report the Mean accuracy, 95%
confidence interval of each dataset. The first eight datasets
are seen during training and the last five datasets are unseen
and used for test only. URT and URL are two strong base-
lines surpassing both Simple CNAPS and SUR, while Ours
outperforms them on most datasets, especially on unseen
domains.

3.4. Results evaluated with updated evaluation pro-
tocol.

As the code from Meta-dataset has been updated, we
evaluate all methods with the updated evaluation protocol



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 55.5± 1.1 93.9± 0.5 86.4± 0.5 78.6± 0.7 73.3± 0.7 81.9± 0.6 63.1± 0.9 90.3± 0.5 77.6± 1.0 50.6± 1.1 96.9± 0.3 77.0± 0.8 62.6± 1.1
20 iterations 56.2± 1.1 94.7± 0.4 86.3± 0.5 78.3± 0.8 73.9± 0.7 81.6± 0.6 63.4± 0.9 90.1± 0.6 79.4± 1.0 52.8± 1.1 97.2± 0.3 78.6± 0.8 65.9± 1.1
40 iterations 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1
60 iterations 55.9± 1.1 95.1± 0.4 85.9± 0.6 77.5± 0.8 74.7± 0.7 80.9± 0.6 62.1± 0.9 90.7± 0.6 82.2± 0.9 52.2± 1.1 97.0± 0.4 78.4± 0.8 64.4± 1.1

Table 6. Sensitivity of performance to number of iterations based on MDL model.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 58.4± 1.1 94.8± 0.4 89.9± 0.4 81.3± 0.7 76.6± 0.7 81.8± 0.6 68.4± 0.9 92.5± 0.5 76.5± 1.1 55.6± 1.1 96.4± 0.4 79.0± 0.7 66.9± 1.0
20 iterations 58.2± 1.1 94.8± 0.4 89.9± 0.4 81.1± 0.7 77.5± 0.8 81.9± 0.6 68.0± 0.9 92.4± 0.5 81.8± 1.0 57.8± 1.1 96.7± 0.4 81.7± 0.8 69.1± 0.9
40 iterations 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
60 iterations 58.7± 1.1 94.9± 0.4 89.5± 0.5 80.8± 0.7 77.4± 0.8 81.8± 0.6 66.2± 0.9 92.5± 0.5 83.7± 0.9 56.9± 1.0 96.6± 0.3 82.0± 0.8 72.0± 0.9

Table 7. Sensitivity of performance to number of iterations based on URL model.

from the Meta-dataset 1 and report the results 2 in Tab. 5.
As shown in Tab. 5, the update does not affect much on the
results and our method rank 1.5 in average and the state-of-
the-art method URL rank 2.7. Our method outperforms other
methods on most domains (9 out of 13), especially obtaining
significant improvement on 5 unseen datasets than the second
best method, i.e. Average Unseen (+7.9). More specifically,
our method obtains significant better results than the second
best approach (URL) on Traffic Sign (+20.2), CIFAR-10
(+8.7), and CIFAR-100 (+7.0).

3.5. Ablation study

Here, we conduct ablation study of our method with the
URL model, unless stated otherwise.
Sensitivity analysis for number of iterations. In our
method, we optimize the attached parameters (α, β) with
40 iterations. Figure 1 and Figure 2 report the results with
10, 20, 40, 60 iterations and indicates that our method (solid
green) converges to a stable solution after 20 iterations and
achieves better average performance on all domains than the
baseline URL (dash green). The mean accuracy with 95%
confidence interval are reported in Tabs. 6 and 7
Influence of α and β. We evaluate different components
of our method and report the results in Tab. 8. The results
show that both residual adapters α and the linear transforma-
tion β help adapt features to unseen classes while residual
adapters significantly improve the performance on unseen
domains. The best results are achieved by using both α and
β.
Initialization analysis for adapters. Here, we investigate
using different initialization strategies for adapters: i) Iden-
tity initialization: in this work we initialize each residual

1As mentioned in https://github.com/google-research/
meta-dataset/issues/54, we also set the shuffle buffer size as
1000 to evaluate all methods and report the results in Tab. 5. This change
does not affect much on the results as the datasets we used were shuffled
using the latest data convert code from Meta-Dataset.

2The results of Simple CNAPS [2] and Transductive CNAPS [1] are
reproduced by the authors and reported at https://github.com/
peymanbateni/simple-cnaps. Results of FLUTE [21] and tri-
M [16] are from their papers. We reproduce the results of SUR [6] and
URT [15] with the updated evaluation protocol for fair comparison.

10 20 30 40 50 60
Iterations

66

68

70

72

74

76

78

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 1. Sensitivity of performance to number of iterations based
on MDL model.

10 20 30 40 50 60
Iterations

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 2. Sensitivity of performance to number of iterations based
on URL model.

adapter as an identity matrix scaled by a scalar δ and we
set δ = 1e− 4; ii) randomly initialization: alternatively, we
can randomly initialize each residual adapter. The results of
different initialization are summarized in Fig. 3. We can see
that our methods with different initialization strategies obtain
similar results, which indicates that our method works also
with randomly initialization and again verifies the stability
of our method. Detailed results of each datasets are shown
in Tab. 9.
Layer analysis for adapters. Here we investigate whether
it is sufficient to attach the adapters only to the later layers.
We evaluate this on ResNet18 which is composed of four



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours w/o α & β 57.0± 1.1 94.4± 0.4 88.0± 0.5 80.3± 0.7 74.6± 0.7 81.8± 0.6 66.2± 0.9 91.5± 0.5 49.8± 1.1 54.1± 1.0 91.1± 0.4 70.6± 0.7 59.1± 1.0
Ours w/o β 57.3± 1.1 94.9± 0.4 88.9± 0.5 81.0± 0.7 76.7± 0.7 80.6± 0.6 65.4± 0.9 91.4± 0.5 82.6± 1.0 55.0± 1.1 96.6± 0.4 82.1± 0.7 66.4± 1.1
Ours w/o α 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.2 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.6± 1.0
Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 8. Effect of each component. We build our method on the URL model and ‘Ours w/o α & β’ means we remove both residual adapters
α and the pre-classifier adaptation layer β in our method.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours(SDL-ResNet-18)-I 59.5± 1.1 78.2± 1.2 72.2± 1.0 74.9± 0.9 77.3± 0.7 67.6± 0.9 44.7± 1.0 90.9± 0.6 82.5± 0.8 59.0± 1.0 93.9± 0.6 82.1± 0.7 70.7± 0.9
Ours(SDL-ResNet-18)-R 58.2± 1.0 78.4± 1.2 71.1± 1.1 74.4± 1.0 77.1± 0.7 67.2± 1.0 45.9± 1.0 90.7± 0.6 81.9± 1.0 57.7± 1.1 94.1± 0.5 81.9± 0.7 70.5± 0.9

Ours(MDL)-I 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1
Ours(MDL)-R 56.0± 1.1 94.1± 0.4 87.1± 0.5 79.7± 0.8 74.0± 0.7 82.0± 0.6 62.6± 0.9 90.6± 0.6 80.9± 0.9 51.7± 1.1 96.9± 0.4 77.7± 0.9 65.8± 1.1

Ours(URL)-I 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(URL)-R 58.8± 1.1 94.9± 0.4 90.5± 0.4 81.8± 0.6 77.7± 0.7 82.3± 0.6 66.8± 0.9 92.6± 0.5 83.7± 0.8 57.7± 1.1 96.9± 0.4 82.5± 0.7 72.0± 0.9

Table 9. Initialization analysis of adapters. ‘Ours(URL)-I’ indicates our method using URL as the pretrained model and initializing residual
adapters as identity matrix (scaled by δ = 0.0001) while ‘Ours(URL)-R’ means our method initialize residual adapters randomly.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours (block4) 59.0± 1.1 95.0± 0.4 90.0± 0.4 80.6± 0.8 77.8± 0.7 82.3± 0.6 68.2± 0.9 91.8± 0.6 70.6± 1.1 57.1± 1.1 95.9± 0.4 77.2± 0.8 65.9± 1.0
Ours (block3,4) 60.4± 1.1 94.7± 0.4 90.0± 0.5 80.4± 0.7 77.8± 0.7 82.2± 0.6 67.2± 0.8 92.5± 0.5 77.2± 1.0 57.9± 1.0 96.7± 0.3 78.8± 0.9 68.6± 0.9
Ours (block2,3,4) 59.6± 1.1 94.9± 0.4 89.9± 0.5 81.0± 0.8 78.2± 0.7 82.4± 0.6 67.6± 0.9 92.3± 0.5 81.5± 1.0 57.9± 1.0 96.6± 0.4 81.5± 0.8 70.6± 1.0
Ours (block-all) 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 10. Block (layer) analysis for adapters based on URL model.

Ours(MDL)-I Ours(MDL)-R Ours(URL)-I Ours(URL)-R
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 3. Initialization analysis for adapters. ’-I’ indicates identity
initialization and ‘-R’ is randomly initialization.

block4 block3,4 block2,3,4 block-all
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 4. Block (layer) analysis for adapters.

blocks and attach the adapters to only later blocks (block4,
block3,4, block2,3,4 and block-all. Figure 4 shows that ap-
plying our adapters to only the last block (block4) obtains
around 78% average accuracy on all domains which outper-
forms the URL. With attaching residual adapters to more

layers, the performance on unseen domains is improved sig-
nificantly while the one on seen domains remains stable.
The mean accuracy with 95% confidence interval for layer
analysis are shown in Tab. 10.

Decomposing residual adapters. Here we investigate
whether one can reduce the number of parameters in the
adapters while retaining its performance by using matrix
decomposition. As in deep neural network, the adapters in
earlier layers are relatively small, we then decompose the
adapters in the last two blocks only where the adapter di-
mensionality goes up to 512 × 512. Figure 5 shows that
our method can achieve good performance with less param-
eters by decomposing large residual adapters, (e.g. when
N = 32 where the number of additional parameters equal
to around 4% vs 13%, the performance is still comparable
to the original form of residual adapters, i.e. N=0). Results
of each datasets in Tab. 11, also show that, by decomposing
large residual adapters, the performance of our method is
still comparable to the original form of residual adapters (i.e.
Ours) with less parameters.

The similar conclusion can be drawn from results (shown
in Fig. 6) of our method using decomposed residual adapters
in all layers. When N increases, i.e., smaller residual
adapters, the average accuracy on all domains is still com-
parable to the original form of residual adapters (i.e. N=0)
with less parameters though the average accuracy on unseen
domains drops slightly. From the results depicted in Tab. 12,
we can see that when N increases, the performance of most
domains are still comparable to the original form of residual
adapters (i.e. Ours) while the performance on Traffic Sign
drops slightly as the adapters in earlier layers are small and
when N is larger the decomposed residual adapters might be



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(N=2) 58.9± 1.1 95.2± 0.4 89.7± 0.5 80.9± 0.7 76.7± 0.7 81.4± 0.6 67.7± 0.9 92.2± 0.5 82.4± 1.0 57.1± 1.0 96.5± 0.4 82.4± 0.7 70.3± 1.0
Ours(N=4) 58.7± 1.1 94.9± 0.4 89.7± 0.5 80.3± 0.7 77.0± 0.7 82.5± 0.6 67.2± 0.9 92.5± 0.5 82.6± 1.0 57.5± 1.1 96.5± 0.4 82.5± 0.7 70.8± 0.9
Ours(N=8) 59.1± 1.1 95.0± 0.4 89.8± 0.5 80.2± 0.8 77.2± 0.7 82.1± 0.6 67.0± 0.9 92.2± 0.5 82.5± 1.0 57.2± 1.1 96.8± 0.4 82.6± 0.7 71.8± 0.9
Ours(N=16) 58.2± 1.1 94.7± 0.4 90.1± 0.4 80.3± 0.8 76.9± 0.7 81.7± 0.6 67.6± 0.9 92.0± 0.5 81.8± 1.0 58.1± 1.1 96.4± 0.4 81.8± 0.7 71.1± 0.9
Ours(N=32) 59.2± 1.1 94.8± 0.4 89.6± 0.5 80.0± 0.8 77.3± 0.6 82.4± 0.6 67.2± 0.9 92.1± 0.5 82.1± 1.0 57.1± 1.0 96.7± 0.3 81.6± 0.8 71.1± 0.9

Table 11. Results of using decomposed RA on layer3,4.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(N=2) 58.1± 1.1 94.8± 0.4 89.7± 0.5 80.2± 0.8 76.9± 0.7 82.1± 0.6 67.8± 0.9 92.0± 0.6 82.5± 0.9 56.9± 1.1 96.7± 0.3 82.0± 0.8 70.3± 1.0
Ours(N=4) 59.6± 1.1 94.8± 0.4 89.9± 0.5 80.3± 0.8 77.4± 0.7 82.6± 0.6 66.6± 0.9 92.9± 0.5 79.7± 1.1 57.6± 1.1 96.5± 0.4 80.9± 0.8 70.6± 1.0
Ours(N=8) 58.2± 1.1 94.6± 0.4 89.6± 0.5 81.2± 0.8 76.6± 0.7 82.7± 0.6 66.5± 0.9 92.3± 0.5 78.1± 1.1 57.3± 1.0 96.3± 0.3 81.0± 0.8 70.9± 0.9
Ours(N=16) 58.9± 1.1 94.6± 0.4 89.7± 0.5 80.1± 0.7 77.0± 0.7 82.1± 0.6 68.4± 0.9 91.9± 0.5 78.3± 1.0 57.8± 1.1 96.0± 0.4 82.0± 0.7 70.3± 1.0

Table 12. Results of using decomposed RA on all layers.

0 2 4 8 16 32
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure 5. Decomposed residual adapters on block-3,4.

0 2 4 8 16
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure 6. Decomposed residual adapters on all layers.

too small to tranform the features. In overall, our method
can achieve good performance with less parameters by de-
composing large residual adapters.

Training time. The training time (meta-train) of our
method is equal to the one of URL (hence no additional cost),
i.e. 48 hours in multi-domain setting, 6 hours for Resnet-18
and 33 hours for Resnet-34 in single-domain learning in one
Nvidia V100 GPU. Whereas CTX meta-training requires 8
Nvidia V100 GPUs for 7 days and approximately 40 times
more expensive than ours. During the meta-test stage, the
model parameters are further trained using support set of

each episode. Meta-test training cost is depicted in Tab. 12
for Meta-Dataset tasks. URL baseline only finetunes param-
eters of PA β. Finetune+NCC updates the entire backbone
parameters. Ours learn RA and PA parameters. While URL
is the fastest baseline, as it does not require backpropagating
the error to early layers, ours is more efficient than finetuning
all the backbone parameters.

Test Dataset Image Omni Air- Birds Tex- Quick Fungi VGG Traffic MS- MNIST CIFAR CIFAR
-Net -glot craft tures Draw Flower Sign COCO -10 -100

URL 0.7 0.7 0.4 0.7 0.4 1.0 1.0 0.5 0.9 0.9 0.4 0.4 1.0
Finetune+NCC 7.7 2.5 7.4 7.0 5.8 9.3 8.7 6.6 9.1 9.0 6.5 6.7 9.3
Ours (URL+RA+PA) 7.2 2.4 6.1 6.8 4.8 8.9 7.4 5.2 8.8 8.3 6.0 6.2 8.6

Table 12. Computation cost (# second per task) during meta-test.

3.6. Qualitative results

We qualitatively analyze our method and compare it to
Simple CNAPS [2], SUR [6], URT [15], and URL [13]
in Figs. 7 to 19 by illustrating the nearest neighbors in all
test datasets given a query image as in [13]. It is clear
that our method produces more correct neighbors than other
methods. While other methods retrieve images with more
similar colors, shapes and backgrounds, e.g. in Figs. 15, 16,
18 and 19, our method is able to retrieve semantically similar
images. More specifically, as shown in Fig. 10, our method
correctly produces neighbors of the bird in the query image
while other methods pick images with similar appearances
or similar background, e.g. images with twigs. In Fig. 15,
other methods mainly retrieve the triangle sign while our
method is able to retrieve the correct sign with illumination
distortion. In Fig. 19, other methods including SUR, URT
are distracted by the blue background but our method select
the correct shark images. It again suggests that our method is
able to quickly adapt the features for unseen few-shot tasks.



Figure 7. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in ImageNet. Green and red colors
indicate correct and false predictions respectively.

Figure 8. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Omniglot. Green and red colors indicate
correct and false predictions respectively.

Figure 9. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Aircraft. Green and red colors indicate
correct and false predictions respectively.

Figure 10. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Birds. Green and red colors indicate
correct and false predictions respectively.

Figure 11. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Textures. Green and red colors indicate
correct and false predictions respectively.

Figure 12. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Quick Draw. Green and red colors
indicate correct and false predictions respectively.



Figure 13. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Fungi. Green and red colors indicate
correct and false predictions respectively.

Figure 14. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in VGG Flower. Green and red colors
indicate correct and false predictions respectively.

Figure 15. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in Traffic Sign. Green and red colors
indicate correct and false predictions respectively.

Figure 16. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in MSCOCO. Green and red colors indi-
cate correct and false predictions respectively.

Figure 17. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in MNIST. Green and red colors indicate
correct and false predictions respectively.

Figure 18. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in CIFAR-10. Green and red colors
indicate correct and false predictions respectively.



Figure 19. Qualitative comparison to Simple CNAPS [2], SUR [6],
URT [15], and URL [13] in CIFAR-100. Green and red colors
indicate correct and false predictions respectively.



References
[1] Peyman Bateni, Jarred Barber, Jan-Willem van de

Meent, and Frank Wood. Enhancing few-shot image
classification with unlabelled examples. arXiv preprint
arXiv:2006.12245, 2020. 3, 4

[2] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank
Wood, and Leonid Sigal. Improved few-shot visual
classification. In CVPR, pages 14493–14502, 2020. 1,
2, 3, 4, 6, 7, 8, 9

[3] Schroeder Brigit and Cui Yin. Fgvcx fungi classifica-
tion challenge. online, 2018. 1

[4] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos,
Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In CVPR, pages 3606–3613, 2014.
1

[5] Carl Doersch, Ankush Gupta, and Andrew Zisserman.
Crosstransformers: spatially-aware few-shot transfer.
In NeurIPS, 2020. 2

[6] Nikita Dvornik, Cordelia Schmid, and Julien Mairal.
Selecting relevant features from a multi-domain repre-
sentation for few-shot classification. In ECCV, pages
769–786, 2020. 1, 2, 3, 4, 6, 7, 8, 9

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016. 1

[8] Sebastian Houben, Johannes Stallkamp, Jan Salmen,
Marc Schlipsing, and Christian Igel. Detection of traf-
fic signs in real-world images: The german traffic sign
detection benchmark. In IJCNN, pages 1–8. Ieee, 2013.
1

[9] Jonas Jongejan, Rowley Henry, Kawashima Takashi,
Kim Jongmin, and Fox-Gieg Nick. The quick, draw!
a.i. experiment. online, 2016. 1

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Citeseer,
2009. 1

[11] Brenden M. Lake, Ruslan Salakhutdinov, and
Joshua B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science,
350(6266):1332–1338, 2015. 1

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. 1

[13] Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal
representation learning from multiple domains for few-
shot classification. ICCV, 2021. 1, 2, 3, 6, 7, 8, 9

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects

in context. In ECCV, pages 740–755. Springer, 2014.
1

[15] Lu Liu, William Hamilton, Guodong Long, Jing Jiang,
and Hugo Larochelle. A universal representation trans-
former layer for few-shot image classification. In ICLR,
2021. 3, 4, 6, 7, 8, 9

[16] Yanbin Liu, Juho Lee, Linchao Zhu, Ling Chen,
Humphrey Shi, and Yi Yang. A multi-mode modula-
tor for multi-domain few-shot classification. In ICCV,
pages 8453–8462, 2021. 3, 4

[17] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained vi-
sual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013. 1

[18] Maria-Elena Nilsback and Andrew Zisserman. Au-
tomated flower classification over a large number of
classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, pages 722–729.
IEEE, 2008. 1

[19] James Requeima, Jonathan Gordon, John Bronskill,
Sebastian Nowozin, and Richard E Turner. Fast and
flexible multi-task classification using conditional neu-
ral adaptive processes. In NeurIPS, 2019. 3

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. IJCV,
115(3):211–252, 2015. 1

[21] Eleni Triantafillou, Hugo Larochelle, Richard Zemel,
and Vincent Dumoulin. Learning a universal template
for few-shot dataset generalization. In ICML, 2021. 3,
4

[22] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In ICLR, 2020. 1

[23] Catherine Wah, Steve Branson, Peter Welinder, Pietro
Perona, and Serge Belongie. The caltech-ucsd birds-
200-2011 dataset. California Institute of Technology,
2011. 1

[24] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012. 2


