
Model MultiScale #epochs AP AP50 AP75 APS APM APL GFLOPs Params

DAB-DETR-DC5-R50 50 44.5 65.1 47.7 25.3 48.2 62.3 202 44M
DN-DETR-DC5-R50 25 44.4 64.5 47.3 24.4 48.0 63.0 202 44M
DAB-Deformable-DETR-R50 ✓ 50 46.9 66.0 50.8 30.1 50.4 62.5 195 48M
DN-Deformable-DETR-R50 ✓ 25 46.8 65.5 50.8 28.9 50.2 62.5 195 48M

Table 1. Results of our method trained for 25 epochs and our baseline method trained for 50 epochs under the same settings. The results
shows we achieve 2x acceleration with denoising training.

7. Appendix
7.1. Acceleration Analysis

We show how much our method can speedup training ex-
actly in Table 1. Our method achieves results comparable to
the baseline with only half of the training epochs, resulting
in 2x acceleration.

7.2. The training wall clock time and GFLOPs

We tested the training wall clock time and GFLOPs with
8 NVIDIA A100 GPUs as shown in Table 2. The total train-

Model Total Training time (min) Training GFLOPs

DAB-DETR-R50 2555(50 epochs) 94.4

DN-DAB-DETR-R50 1443(25 epochs) 94.5

Table 2. We adopted five denoising groups for DN-DAB-DETR.
The results are tested on the same GPUs for fair comparison.

ing time is calculated by multiplying the number of training
epochs and the training time for each epoch. The training
time per epoch is 51.1min and 57.7min for DAB-DETR-
R50 and DN-DAB-DETR-R50, respectively. While denois-
ing training introduces minor training cost increase, it only
needs about half number of training epochs (25 epochs) to
achieve the same performance as DAB-DETR-R50. The
practical training speedup is indeed remarkable.

7.3. Other tasks and future work

7.3.1 Other Tasks

In addition to regular detection, our design of queries as
anchor box + label makes the detection model capable of
handling other tasks. For example, known objects detection
and known labels detection. Note that results shown in this
section are just a preliminary exploration and not based on
our well trained model with best hyper-parameters.
Known Objects Detection: Assume we know a part of
the objects in an image and want to predict the remain-
ing objects. We want the known objects to help predict
the unknown objects through co-occurrence relations. We
did some preliminary exploration. We randomly divide the
80 classes of MSCOCO2017 into 2 parts including known
classes and unknown classes. We put objects of known
classes in denoising part and want the matching part to pre-
dict the objects of the unknown classes. We do not use at-

tention mask so that the matching part can get useful in-
formation from the denoising part. Our experimental re-
sults is shown in Table 3. Compared with the evaluation
without known boxes, the known objects evaluation im-
proves the performance, which indicates that co-occurrence
helps the prediction of unknown boxes. Moreover, our DN-
DETR trained with known objects exceeds DAB-DETR
only trained on unknown classes when evaluating without
known objects. This means the denoising of extra boxes
from extra (known) classes also helps the performance on
the unknown objects.

Method Seting AP AP(Cond)

DAB-DETR 0.7/0.3 38.4 -
DN-DETR 0.7/0.3 42.1 42.9

DAB-DETR 0.5/0.5 37.8 -
DN-DETR 0.5/0.5 39.1 40.3

Table 3. Extra label prediction on COCO. We split the annota-
tion of COCO class into known/unknown classes, where objects
of known classes only appear in denoising part, and we evaluate
the performance on the unknown classes. Cond means the result
is evaluated with known objects.

Known Labels Detection: For each image, we assume we
know all the class labels in the image without box informa-
tion. Since our model has interpreted the query embedding
into class label embedding, we can seamlessly utilize these
known labels to detect the boxes of each class label. For
each class c in the image, we concatenate its label embed-
ding with the indicator 1 which denotes known label. We
feed the concatenated vector into the decoder and let the de-
coder output all boxes of class c. To compare with methods
without known boxes. We concatenate outputs of all classes
and evaluate the result as shown in Table 4. Within 10
epochs of finetuning on pretrained DN-DETR, the known
label detection performance is improved to 46.6.

7.3.2 future work

There are two potential future works to be mentioned here.
One is zeroshot detection and the other is progressive infer-
ence.
Zeroshot Detection : Since we have decoupled decoder



Method Seting AP

DAB-DETR no knwon labels 42.2
DN-DETR no knwon labels 43.4
DN-DETR known label (1ep) 43.8
DN-DETR known label (10ep) 46.6

Table 4. Known label detection results under ResNet-50 with 1
denoising group. 1ep and 10ep means finetuned 1 or 10 epochs
from pretrained DN-DETR.

queries as anchor boxes and class labels, pretrained class
label embeddings can be fed into the class label part of
the queries. To enable zeroshot detection, one can take
80 classes of MSCOCO as phrases and collect phrase em-
beddings from a pretrained language model as the class la-
bel embedding. With the pretrained label embedding, it is
possible to train a given class detector which takes a class
label embedding as input and detect objects of the given
classes. In inference time, class label embeddings from un-
seen classes can be fed into the decoder to achieve zeroshot
detection.
Progressive inference Based on the known objects detec-
tion, a progressive inference method can be designed. For
example, we can train a DN-DETR capable of doing known
objects detection. In inference time, we let the detector pre-
dict objects and then, we can choose the objects with high-
est score and treat them as known objects to do known ob-
jects detection. For each step of prediction, we choose ob-
jects with highest score and add them to the known boxes
set. After repeating for many times, we get the final predic-
tion.


