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Figure 1. Model architecture. The description network (a) and detection network (b) consist of several blocks, we report the scale and
output channels of each block, and illustrate the details of each block in the bottom box.

We first introduce the details of our model in Sec. 1 and
discuss the query points generation during description net-
work training in Sec. 2. Then, we expand the detection net-
work training in Sec. 3. Next, we show detailed experimen-
tal settings in Sec. 4. After that, we give a discussion on
the limitations and broader impact of our PoSFeat in Sec. 5.
Finally, additional qualitative results are included in Sec. 6.

1. Model Architecture

Our model consists of two parts, i.e. the description net-
work and the detection network, as illustrated in Fig. 1. For
description network, we adopts the ResUNet used in [9],
which follows a widely used encoder-decoder architecture.
We use a truncated ResNet-50 [4] (pre-trained on ImageNet
[2]) as the encoder, and use several 3×3 convolution layers
combining with bilinear upsampling and residual connec-

tion to construct the decoder. For detection network, we use
a simple three-layer architecture. The first layer takes the
original image and two feature maps from description net-
work as inputs, and aggregate the original image and feature
maps from description network for detection. For better ag-
gregation of original image and feature maps, we use the in-
stance normalization [8] instead of batch normalization [5]
in our detection network.

2. Query Points Generation in Description Net-
work Training

We adopt grid-based random sampling to select query
points for the training of description network to avoid the
bias of pre-defined keypoints. When pre-defined keypoints
(e.g. SIFT) are used to train the description network, the
densities of SIFT keypoints in different areas vary a lot.
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(a) original images (b) SIFT (c) random sample

Figure 2. An illustration of pre-defined keypoints bias. We adopt
PCA [3] to visualize the descriptors of the original images (a).
When the description network is trained with SIFT (b), there are
insufficiently trained areas (black boxes), which leads to false key-
points detection. On the contrary. When the description network
is trained with grid-based random sample (c), all the areas in the
image will be sufficiently trained.

Consequently, areas with few SIFT keypoints are usually
under optimized, as shown in Fig. 2. This bias limits the
discriminativeness of the descriptors and leads to detection
network produces considerable false keypoints detection.
To address this problem, we use grid-based random sam-
pling to generate query points. Specifically, we first split
the image into Ng grids with the shape of g × g. Then we
uniformly select Ng points with with one point in a grid.
With this grid-based random sample strategy, the descrip-
tion network will be sufficiently trained in all areas, and thus
detection network can produce more accurate keypoints.

3. Detection Network Training
In this section, we present more details on the detection

network training.
As described in the main paper, we first extract the fea-

ture maps F1 and F2 from a image pair I1 and I2 with the
frozen description network. Then we feed F1 and F2 into
the detection network to produce the keypoint heatmaps,
and model the keypoint distributions based on the heatmaps.
Specifically, we divide these heatmaps into grids and select
at most one keypoint from each grid cell. For a pixel x in
image I1, the probability that x is a keypoint can be formu-
lated as,

Pkp(x|F1) = Softmax(FGx
1 )x · Sigmoid(F1)x, (1)

in which FGx
1 denotes the local heatmap of the grid cell

that contains pixel x, Softmax(FGx
1 )x represents the local

probability of x to be a keypoint, and Sigmoid(F1)x repre-
sents the global probability of x to be a keypoint.

According to the keypoint probability distribution, we
then select the candidate sets Q1 = {x1,x2, · · · |xi ∈ I1}

and Q2 = {y1,y2, · · · |yi ∈ I2} to compute the similarity
matrix S, whose elements are defined as,

Si,j = F1(xi)× F2(yj)
T,xi ∈ Q1 yj ∈ Q2. (2)

Afterwards, we can compute the matching probability Pm

according to the similarity matrix,

Pm = Softmax(S)1 · Softmax(S)2, (3)

in which Softmax(S)1 and Softmax(S)2 denotes the soft-
max operation along the row and column, respectively.

Next, we compute the rewards according to the epipolar
constraints,

R(xi,yj) =

{
λp, if distance(yj , Lxi

) ≤ ε
λn, if distance(yj , Lxi

) > ε
, (4)

where the reward threshold ε is empirically set to 2. Since
the description network is frozen and reliable, the matches
with low matching probability are unreliable, and thus we
further truncate the matching probability Pm according to
the reward to omit the false positive rewards for the unreli-
able matches. Specifically, we manually set Pm(xi,yj) =
0 for the pairs (xi,yj) whose reward R(xi,yj) = λp and
matching probability Pm(xi,yj) < 0.9.

Finally, we compute the loss for detection network,

Lkp =− 1

|Q1|+ |Q2|

( ∑
xi,yj

Lrew(xi,yj)

+ λreg
(∑

xi

logPkp(xi) +
∑
yj

logPkp(yj)
))
,

(5)

where λreg is a regularization penalty and the reward loss
Lrew(xi,yj) is defined as:

Lrew(xi,yj)=Pm(xi,yj)·R(xi,yj)·log(Pkp(xi)Pkp(yi)).
(6)

Note that, the Pm is truncated according to the rewards and
thus the match pairs with positive rewards but low matching
probability are left neutral.

4. Experimental Settings
In this section, we present the hyper-parameters of our

method on different datasets. During inference, we apply
non-maximum suppression (NMS) to detect keypoints, and
use a mutual nearest neighbour matcher for matching. In-
stead of resizing the images, we crop the images from the
top-left side to guarantee both the height and width of the
images are divisible by 16.

HPatches Dataset [1]. The NMS size is set to be 3×3 due
to the existence of low-resolution images, and the maximum
keypoint numbers are limited to be 8192.
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Figure 3. Qualitative results on HPatches. The same as figures in main paper, only successfully matched keypoints are shown and colored
according to their match errors. The colorbar is shown on the right. Best viewed in color.

Aachen Day-Night Dataset [10]. Because of the high
image resolutions, the NMS size is set to be 7 × 7 on
the Aachen Day-Night dataset, and the maximum keypoint
numbers are limited to be 16k. Note that, keypoints with
scores smaller than 0.9 in the heatmaps are filtered out.

ETH Local Feature Benchmark [7]. The NMS size is
set to be 7 × 7, and the maximum keypoints numbers are
limited to be 20k. Keypoints with scores smaller than 0.9 in
the heatmaps are also filtered out. We additionally applying
ratio test during matching with a threshold 0.8 to achieve
robust reconstruction.



(b) Aachen Day-Night v1.1(b) Aachen Day-Night v1.1

(a) Aachen Day-Night v1(a) Aachen Day-Night v1

Figure 4. The sparse 3D models of Aachen. These models are re-
constructed using Colmap [6] with features extracted by PoSFeat,
and are further used to do night-time images localization. Note
that these models are reconstructed based on the camera poses pro-
vided by the author of the dataset.

5. Limitations and Broader Impact
The PoSFeat suffers limited capability to deal with large

rotation and scale changes. On the HPatches dataset, our
PoSFeat produces limited performance on several scenes
with pure rotation. On the ETH local feature benchmark,
our PoSFeat cannot well handle the scenes with extreme
scale changes thus has limited performance in #Imgs (e.g.,
only 419 images are registered in Mardrid Metropolis).

The PoSFeat is a general local feature method, although
we only apply it with image matching, visual localization
and 3D reconstruction in our paper, it can be easily ex-
tended to recognize or reconstruct human faces. Therefore,
the researches and the applications about the recognition or
reconstruction of human faces must strictly respect the per-
sonality rights and privacy regulations.

6. Visualization
We present some qualitative results in this section. The

image matching results on HPatches are shown in Fig. 3.
The 3D models of Aachen are illustrated in Fig. 4, which is
reconstructed with the features extracted by PoSFeat, and is
used to do visual localization on Aachen Day-Night dataset
. And the 3D reconstruction results on ETH local feature
benchmark are shown in Fig. 5.
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