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A. Impact of Alignment Quality

In this section, we provide more detailed experimental
settings and more results of our preliminary experiments in
Section 3.2 in the main paper.

Experimental Settings. We use the 3D-MAN++ Pedes-
trian model mentioned in Section 4.1 and Section B. To
examine the alignment quality, InverseAug and all data aug-
mentations are removed. Then, we apply different mag-
nitude of RandomRotation [12] to both single-modal and
multi-modal models. Finally, for the same perturbation
magnitude, we compute the performance gap for the best
validation results from the single-modal and multi-modal
models.

Additional Results. Besides testing with RandomRota-
tion [12], we also test with RandomFlip [12], another com-
monly used data augmentation strategy for 3D point cloud
object detection models. Specifically, RandomFlip flip the
3D scene along the Y axis with a given probability p. Here,
we set the probability as 0%, 50%, and 100%, respectively,
and the results are shown in Table 1. The observation is
similar: when applying large magnitude data augmentation,
the benefit from multi-modal fusion diminishes. For exam-
ple, when applying zero-probability RandomFlip (i.e., not
applying this data augmentation), the improvement is the
most significant (+2.3 AP); when flip probability is 100%
(i.e., flip the 3D scene every time), the improvement is al-
most zero (+0.03 AP).

B. Implementation Details of 3D Detectors

In the main paper, we mainly focus on providing more
details about DeepFusion due to the space limitation. In this
section, we will also illustrate other important implementa-
tion details to build the strong 3D object detection models.

Point cloud 3D object detection methods. We reimple-
ment three popular point cloud 3D object detection meth-
ods, PointPillars [4], CenterPoint [11], and 3D-MAN [10].
As mentioned in Section 2, PointPillars voxelize the point

cloud by pillars, a single tall elongated voxel per map lo-
cation, to construct bird eye view pseudo image; finally,
the pseudo image is fed to an anchor-based object detection
pipeline. A high-level model pipeline is shown in Figure 1.
CenterPoint is also a pillar-based method, but using anchor-
free detection head instead. Note that we only implemented
the PointPillars-based single-stage version of CenterPoint.
3D-MAN is similar to CenterPoint, and the main difference
is when computing the loss, 3D-MAN uses a Hungarian
algorithm to associate the prediction and the ground-truth
(See Section 3.1 of Yang et al. [10] for more details).

Flip Probability | 0% | 50% | 100%
Single-Modal 72.6 | 76.7 71.8
Multi-Modal 749 | 76.8 71.9
Improvement +2.3 | +0.10 | +0.03

Table 1. Performance gain by multi-modal fusion diminishes as
the magnitude of RandomFlip [12] goes up, indicating the impor-
tance of accurate alignment. InverseAug is not used here. On the
Waymo Open Dataset pedestrian detection task, the LEVEL 1 AP
improvements from single-modal to multi-modal are reported.

Our improved implementations. We also introduce two
simple but effective findings that significantly improve the
point cloud 3D object detection baselines. We take the
PointPillars framework as an example to introduce them,
but these techniques can be naturally applied to other point
cloud 3D object detection frameworks, such as CenterPoint
and 3D-MAN. As shown in Figure 1, we build upon the
PointPillars model and indicate our modifications the red
dotted line boxes. The NAS block depicts the voxel fea-
ture encoder found using architecture search. We also re-
place the ReL.U [2, 6] activation function in the original
frameworks with SILU [1,7]. Our improved models (named
as PointPillars++, CenterPoint++, and 3D-MAN++) shows
better performance that its baseline method as shown in Ta-
ble 4 in the main paper. For example, for 3D-MAN, after
applying these two techniques, the LEVEL_2 APH is im-
proved from 52.2 to 63.0. This improvement is significant,
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Figure 1. The overview of PointPillars framework and its improved implementation (marked in red dashed boxes). Our improved imple-
mentation replace the original Voxel Feature Encoder from one fully-connected layer to a multilayer perceptron, whose hyperparameter

(such as the number of layers, and the number of filters) are automatically discovered by Neural Architecture Search [

]. In addition, we

change the non-linear activation function from ReLU [2,6] to SILU [1,7].
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Figure 2. The DropFrame process during training of a 5-frame model. In this example, Frame 2 and 4 are dropped out before collapsing.
The frames selected to be dropped are randomly selected in each training step. During inference, all frames are used as input without any

frames dropped.

and is consistently observed from other metrics and from
other baselines.

Other training details. We use both LEVEL_1 and
LEVEL_2 difficulty data for training. Since the LEVEL_2
data is difficult for model to predict, we use the uncertainty
loss [5] during training to tolerate the models to detect low-
confident objects with low accuracy.

Details of the submitted models. We apply DeepFusion
to CenterPoint to prepare our models for submission. We
enlarge the Max Rotation for the RandomRotation augmen-
tation to 180° (120° for Pedestrian model) since we see its
benefit according to Table ??. We also enlarge the pseudo-
image feature resolution from 512x512 to 704 x704. We
combine the information from previous frames by simply
concatenating the point-clouds across the last NV frames to-
gether. As shown in Figure 2, to prevent the over-fitting is-
sue under the multi-frame setting, we propose DropFrame,
that randomly drop the point cloud from previous frames.
Our very best model concatenates 5 frames, and with
dropframe probabilities 0.5 during training. Besides, we
also apply model ensemble and Test-Time Augmentation
(TTA) by weighted box fusion (WBF) [3]. For TTA, we

use yaw rotation, and global scaling. Specificly, we use
[0°, £22.5°, £45°, +£135°, £157.5°, £180°] for yaw ro-
tation, and [0.95, 1, 1.05] for global scaling. For model
ensemble, we obtain 5 different type of models with dif-
ferent pseudo-image feature resolution and different input
modality, i.e., single-modality 512 / 704 / 1024 resolution,
and multi-modality 512 / 704 resolution. For each type of
model, we train 5 times with different random seed. Then,
we rank all 25 models with the performance on validation
set and ensemble top-k models, where k is the optimal value
to get the best results on the validation set.

C. Comparison with Larger Single-Modal
Models

The goal of this section is to compare the Single-Modal
baseline with DeepFusion under the same computational
budget. To achieve this, we first scale up the single-
modality model. Since we have sufficiently scaled up
the voxel feature encoder and backbone when building the
baseline models, enlarging the resolution of the pseudo im-
age is probably the most effective way for further scaling the



single-modal model to match the latency with multi-modal
model, and thus we adopt such a strategy here. Specifi-
cally, we train the models under resolutions ranging from
512 up to 960, and test the performance of each setting.
Figure 3 clearly shows that DeepFusion achieves 67.0 L2
APH with 0.32s latency while the single-modal model can
only achieve 65.7 L2 APH with the same latency budget.
Further scaling up the single-modal model brings marginal
gain to the performance, which is capped at 66.5 L2 APH
and still worse than DeepFusion.
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Figure 3. Model latency vs. detection performance. DeepFusion
significantly outperforms single-modal models under all latencies.

Limitations: This paper focuses on fusing lidar and cam-
era information. However, our proposed method could also
be potentially extended to other modalities, such as range
image, radar and high-definition map. Besides, we simply
adopt voxel-based methods such as PointPillars [4], but it
is possible to further improve the performance by adopting
strong baselines [9].

License of used assets: Waymo Open Dataset [8]: Waymo
Dataset License Agreement for Non-Commercial Use (Au-
gust 2019). !
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