Supplemental Material: Deep Hierarchical Semantic Segmentation

Liulei Li'**, Tianfei Zhou? , Wenguan Wang?", Jianwu Li' , Yi Yang*

! Beijing Institute of Technology > ETH Zurich ® ReLER, AAIL University of Technology Sydney * CCAI, Zhejiang University ® Baidu Research

https://github.com/0liliulei/HieraSeg

1. Detailed Hierarchical Architecture

We use the official hierarchical structure provided in
each dataset. Detailed semantic hierarchies are provided in
Fig. 1 for Mapillary Vistas 2.0 [3], Fig. 2 for Cityscapes [1],
Fig. 3 for PASCAL-Person-Part [4] and Fig. 4 for LIP [2].
For Mapillary Vistas 2.0 and Cityscapes, we add a virtual
root node (i.e., A11) to represent the most general concept.

2. Additional Qualitative Result

We provide additional visualization results on four
datasets, including Mapillary Vistas 2.0 [3] val in Fig. 5,
Cityscapes [1] val in Fig. 6, PASCAL-Person-Part [4] val
in Fig. 7 and LIP [2] val in Fig. 8. The left column shows
results from the baseline model while the right column is the
predictions produced by HSSN. We see that HSSN yields
consistently better visual effects than the baseline model.

3. Additional Ablative Study

We give extra ablative studies for the hyper-parameters
emerged in our approach in Table 1. It can be seen that,
for m. and 0.5 in Eq. 8, there is minor impact to the per-
fromance. This indicates our method is robust to hyper-
parameters. For the balance factor 3 between L™ and
L™, scheduling it in a cosine annealing policy yields better
performance. It is reasonable due to the poor recognition
capability of the network at the initial stage of training.

4. Discussion on Triplet Number

We further investigate the impact of the number of
triplets in £TT sampled druing training on performance. It
can be seen in Table 2 that the introduce of triplet loss im-
poses additional computation to the model and slows down
the training speed. However, HSSN is able to reach very
promising performance using a small number of triplets
(e.g., 200) on both datasets. Further increasing the num-
ber only brings minor improvements. Based on the results
in Table 2, we set the number to 200 for all datasets. This

“Work done during an internship at Baidu Research.
Corresponding author: Wenguan Wang.

meinEq.8 || mloU*t mloU" ¢
0.05 93.16 82.81
0.10 (default) 93.29 82.99
0.15 93.19 82.86
(a)
0.5inEq.8 || mloU"t mloU" 1
0.45 93.17 82.84
0.50 (default) 93.29 82.99
0.55 93.13 82.80
(b)
B Schedule Value | mloUZt mloUTt
Cosine (default) 0—0.5 93.29 82.99
Constant ‘ 0.5 93.02 82.68
)

(
Table 1. More ablative experiments for hyper-parameters (§3)
on Cityscapes[1] val.

PASCAL-Person-Part
mloU 1 Time |

1 - 39.17 0.93 72.89 0.41

2 100 39.82 1.06 (-0.12) || 74.76 0.52 (-0.20)
31200 (default) 40.16 1.18 75.44 0.58

4 500 75.53 (+0.09) 0.72

Mapillary Vistas 2.0

#) #Triplets - out Time |,

40.19 (+0.03) 1.58

Table 2. Impact of pixel triplet number (§4) on Mapillary Vistas
2.0 [3] val and PASCAL-Person-Part [4] test. Time indicates
training time (second) for each batch.

facilitates HSSN to perform triplet sampling at negligible
cost and be rewarded with impressive performance boost.

5. Broader Impact

Our research offers a novel perspective of modeling hi-
erarchical semantic structures for semantic segmentation.
Through directly incorporating semantic hierarchy into the
optimization objective, we make a solid step towards a more
reliable semantic segmentation algorithm which could en-
able many practical systems such as autonomous vehicles,
robot navigation to make confident decisions.

6. Pseudo Code

To help the understanding of HSSN, we provide pseu-
docodes for tree-triplet loss £ in Algorithm 1 and focal
tree-min loss £F™ in Algorithm 2 .

References

(1]

(2]

(3]

(4]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, 2016. 1,4, 6
Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin. Look
into person: Joint body parsing & pose estimation network
and a new benchmark. TPAMI, 2018. 1,4, 8

Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In ICCV, 2017. 1, 3,5
Fangting Xia, Peng Wang, Xianjie Chen, and Alan L Yuille.
Joint multi-person pose estimation and semantic part segmen-
tation. In CVPR, 2017. 1, 4,7

1 architecture of Mapillary Vistas 2.0[3].

ica

h

Figure 1. Hierarc

~ Terrain

Figure 2. Hierarchical architecture of Cityscapes[].

Figure 4. Hierarchical architecture of LIP[2].

Full Body ,’

Figure 3. Hierarchical architecture of PASCAL-Person-Part[4].

Figure 5. More visualization results for semantic segmentation on Mapillary Vistas 2.0[3] val.

Figure 6. More visualization results for semantic segmentation on Cityscapes[1] val.

Algorithm 1 Pseudocode of Tree-Triplet loss (i.e., LTT) in

a PyTorch-like style.

HEIGHT: height of the semantic tree
def find_triplet_candidates(cur_cls, labels):
find a random level as postive threshold
level = random (HEIGHT-1)
find the parent of current class at given level
target_parent = FIND_PARENT (level, cur_cls)
find all children of the given node
child_cls = FIND_CHILDREN (target_parent)
classes qualified to be positive
pos_cls = child_cls - cur_cls

idx_anc = (labels==cur_cls)

idx_pos = (labels>=pos_cls[0]) & (labels<pos_cls
[-11)

idx_neg = (labels<pos_cls[0]) | (labels>=pos_cls
[-11)

return idx_anc, idx_pos, idx_neg

f========== compute margin m, Eq.8 ===========#

1_*: label of anchor, pos and neg

epsilon: constant for the tolerance of intra-class
variance

PSI: function to get the tree distance between two
classes

def compute_margin(l_anc, 1_pos, l_neg, epsilon=0.1):

margin = torch.ones_like(l_anc) x epsilon
for cur_trip, (anc, pos, neg) in enumerate (zip (
1_anc, 1l_pos, l_neg)):
dynamic margin according to tree distance
margin[cur_trip] += 0.5%(PSI(anc, neg)-PSI (anc,
pos))/ (2xHEIGHT)

return margin

#====== compute tree triplet loss, Eq.7 =======#

embedding: 1l2-normed features (H x W x C)

labels: ground truth (H x W)

max_triplet: max number of triplets sampled in a
batch

def tree_triplet_loss (embedding, labels, max_triplet):

labels = labels.view(-1)
embedding = embedding.view (-1, embedding.size(-1)

triplet_loss = 0

for cur_cls in torch.unique (labels):
for each class, find anchor, positive and
negative candidates
idx_anc, idx_pos, idx_neg =
find_triplet_candidates (cur_cls, labels)

maximum number of sampled triples
max_num = min(torch.sum(idx_anc), torch.sum(
idx_pos), torch.sum(idx_neg), max_triplet)

f_anc = embedding[idx_anc] [:max_num]
f_pos = embedding[idx_pos] [:max_num]
f_neg = embedding[idx_neg] [:max_num]

compute cosine distance

distance = torch.zeros ((max_num, 2)
distance[:,0] = 1-(f_anc*f_pos).sum(dim=1)
distance[:,1] = 1-(f_anc*f_neg) .sum(dim=1)

l_anc = labels[idx_anc] [:max_num]
1_pos = labels[idx_pos] [:max_num]
1l_neg = labels[idx_neg] [:max_num]

compute margin
margin = compute_margin(l_anc, 1l_pos, 1_neq)

compute triplet loss

loss = distance[:,0] - distance[:,1] + margin
loss = F.relu(loss)

triplet_loss += loss.sum()

return triplet_loss

Algorithm 2 Pseudocode of Focal Tree-Min loss (i.e.,
LF™) in a PyTorch-like style.

predict: predicted score map (H x W x N)
target: ground-truth label map (H x W x N)
gamma: focusing hyper-parameter
CLASS_RANGE (int: level): an utility function to get
indices of classes in a specific level
def focal_tree_min_loss (predict, target, gamma) :
compute hierarchy-coherent scores for positive
classes (Eqg.4)
pos_score = [predict[:,:,CLASS_RANGE (HEIGHT-1)]
for ii in range (HEIGHT-2, -1, -1):
pos_score.append (torch.min (
torch.cat ([predict[:, :,CLASS_RANGE (ii)],
pos_score([-1]], dim=-1), dim=-1, keepdim=
True) [0])

W

compute hierarchy-coherent scores for negative
classes (Eqg.4)
neg_score = [predict([:,:,CLASS_RANGE (0)]]
for ii in range (1, HEIGHT):
neg_score.append (torch.max (
torch.cat ([predict[:, :,CLASS_RANGE (ii)],

neg_score[-1]], dim=-1), dim=-1, keepdim=
True) [0])

accumulate losses for all levels
loss = 0
for ii in range (HEIGHT) :
loss +=(-target*torch.pow(l-pos_score[ii], gamma)
«torch.log(pos_score[ii]
- (l-target) torch.pow(neg_score[i1i], gamma)
*torch.log(l-neg_score[ii])) .sum()

return loss

