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1. Overview

In this supplementary, we first describe the implemen-
tation details of our editing methods and VLN training in
Sec. 2 and explain the evaluation metrics we use in Sec. 3.
We show the back translation results for models trained with
CLIP-ViT-32 and CLIP-ViT-16 features on different cre-
ated environments in Sec. 4, and adapt our ENVEDIT to
another pretrained VLN agent in Sec. 5. We explore the
impact of image preprocessing during feature extraction in
Sec. 6. We then explore curriculum learning for training
on both the original environments and the created environ-
ments in Sec. 7. Furthermore, we show the performance
of training with the environments created by masking out
different numbers of classes in Sec. 8. Moreover, we in-
clude our agent’s performance for each different unseen en-
vironments in Sec. 9 and analyze the performance varia-
tion when adapting different edited environments to differ-
ent VLN base agents in Sec. 10. Lastly, we show qualitative
examples from our created environments in Sec. 11. Limi-
tations of our work is discussed in Sec. 12.

2. Implementation Details

In the environment creation stage, the style transfer
model is directly adopted from [9]. We train the image syn-
thesis model for 10 epochs on the training environments in
Room-to-Room dataset with the default hyper-parameters
from [11]. The model is trained to generate new environ-
ments given the semantic segmentation of the original en-
vironments. In the Vision-and-Language Navigation train-
ing, we use the default hyper-parameters from [7, 4] when
training their models on R2R dataset. On the RxR dataset,
we replace the bi-directional LSTM based instruction en-
coder in [13] with a cased multi-lingual BERTgasg [4].
The instruction encoder is optimized with AdamW [10] and
linear-decayed learning rate (peak at 4e-5). Other parame-
ters are the same as in [13]. In the back translation stage,
the speaker and the agent are trained with the same hyper-
parameters as in [14].

3. Evaluation Metrics

We evaluate our model with six metrics: (1) Success
Rate (SR): whether the agent could stop within 3 meters
of the target. (2) Success Rate weighted by Path Length
(SPL) [1], which penalizes navigation with long paths. (3)
Trajectory Length (TL): path length in meters. (4) Navi-
gation Error (NE): the distance between the target and the
agent’s end point in meters. (5) normalized Dynamic Time
Warping (nDTW) [8]: penalizes agents for deviating from
the reference path. (6) success rate weighted by normal-
ized Dynamic Time Warping (sSDTW) [8]: only consider the
nDTW score for successful paths and set the score to O for
failed paths. SR, SPL are the main metrics for evaluation
on R2R dataset, and nDTW, sDTW are the main metrics for
RxR dataset.

4. Back Translation Results

We show the performance of training with the original
environment and one type of newly-augmented environ-
ments (i.e., Fs, Fis,, Eis,, E;Zl, E{ZQ) on R2R dataset
in Table 1. Back translation with the style-aware speaker
is applied in these experiments. We can see that training
with any of our created environments improves the baseline
model by a large margin, which is consistent with the per-
formance before back translation. Specifically, after back
translation, F;s, works the best in SR for ViT-B/32 fea-
tures, and E7;, works the best in SR for ViT-B/16 features,
outperforming the baseline model by 4.9% and 3.1% re-
spectively. Besides, after back translation, training on envi-
ronments created with image synthesis method gets higher
performance than environments created with style trans-
fer approach. Specifically, model trained on environments
created with image synthesis method improves 3.5% with
back translation while model trained on environments cre-
ated with style transfer approach improves 2.1%". This in-
dicates models trained with different environments benefit
differently from back translation.

!Performance without back translation is in Table 1 in the main paper



Environment Components ViT-B/32 ViT-B/16

Models Style Appearance Object TL NE| SRt SPLt TL NE| SRt SPLt
EnvDrop* [13] X X X 16.128 4794 556 49.7 | 18.844 4429 579 50.6
Ey v X X 15912 4335 602 53.8 | 15916 4344 603 533

Eis, X v X 17495 4325 60.5 53.1 | 16984 4387 593 523

Eis, v v X 17.945 4.650 58.6 51.1 | 18.189 4.423 59.1 5l1.1
E} X v v 17.956 4531 585 51.0 | 17.989 4232 60.8 542
E}, v v v 17.283 4405 582 51.1 | 16.204 4.181 604 544

Table 1. Performance of training the agent with one kind of our edited environments and back translation. Results are on R2R val-unseen

set. ViT-B/32(16) indicate image features extracted with different CLIP-ViT models [

]. “*” indicates reproduced results. v indicates the

environment component in the new environment is different from the original environment, while X indicates the same.

Models TL NE| SR{ SPL{
OBERT-p365* [/] 12425 4.104 62.1 563
E,-p365 12551  4.054 624 563
E;y,-p365 11749 3930 62.6 574

B -p365 11.739 3917 627 56.7
OBERT-16[7] 11564 4019 619 57.1
E,-16 12233 3880 63.5 576
Ej,-16 11956 3.808 64.9 58.1

E™ -16 12.023 3937 632 574

1871

Table 2. Performance of applying our proposed method to SotA
VLN agents on R2R validation unseen set. “-16” indicates image
features extracted with ViT-B/16, “-p365” indicates image features
extracted with ResNet [6] pre-trained on ImageNet [3] and fine-
tuned on Place365 [15]. “*” indicates reproduced results.

5. Performance on Rec-BERT

In this section, we show that our ENVEDIT is comple-
mentary to other VLN pre-training methods. We enhance
the VLN pre-traind model [7] with our methods and illus-
trate the improvements on R2R dataset.

The model architecture of [7] is based on transformer.
The weights of their model are initialized with PREVA-
LENT [5], a multi-modal transformer pre-trained on in-
domain VLN data. In both works, image features are ex-
tracted with the ResNet [0] which is pre-trained on Ima-
geNet [3] and fine-tuned on Place365 [15]. We first show
results using the same image features as their work, and fur-
ther explore adapting ViT-B/16 features for their model.

As shown in Table 2, when trained with “place365” fea-
tures, augmenting the original environment with £;¢ could
improve the baseline by 0.5% in SR and 1.1% in SPL.
Augmenting with the other two environments could also
improve the baseline by 0.5% in both SR and SPL. This
demonstrates the effectiveness of adapting our method to
other strong SotA VLN models.

To use “ViT-B/16” features, we map the 512 dimension
feature to 2048 with a linear layer with dropout.” Though

2Since [5] does not provide source code for their in-domain pre-training

this way of adapting features could not fully take advan-
tage of in-domain pre-training [5] on “places365” features,
the baseline “OBERT-16" shows competitive performance
compared with “OBERT-place365” on both SR and SPL.
Augmenting the original environments with E;,, achieves
the best performance, improving the baseline by 3.0% in
SR and 1.0% in SPL. Similar improvements are observed
for the other two kinds of new environments (i.e., 1.6% in
SR for E; and 1.3% in SR for EjY ), validating the effec-
tiveness of our proposed approach other over SotA methods.

6. Image Preprocessing Variants

In this section, we explore whether image preprocessing
will influence the performance when adapting ENVEDIT to
SotA pre-trained VLN agents OBERT [7]. Our experiments
are based on features extracted with ResNet [6] pre-trained
on ImageNet [3] and fine-tuned on Place365 [15].

Our image input is of 640 x 480 x 3. In the first prepro-
cessing, we resize the image to 256 x 256 x 3 and then crop
the image at the center to 224 x 224 x 3 before normaliza-
tion, which is consistent with the image preprocessing when
evaluating on ImageNet classification task. We then directly
adopt the features from the last pooling layer of the ResNet.
We use this preprocessing in our main paper. In the sec-
ond preprocessing, instead of transforming the image size
to match the required ResNet input size, we follow [2] to
change the last pooling layer in ResNet to global pooling,
and does not further do any resizing on input image except
normalization. This preprocessing is also used in previous
VLN works.

We show the results for two preprocessing methods in
Table 3. We can see that removing the image transforma-
tion in the preprocessing significantly improves the base-
line performance (OBERT-1 vs. OBERT-2). This is due
to the baseline model is pre-trained on “place365” features
extracted by [2], which does not use image resize and crop.
We also observe that after training on both the original envi-

method, it’s hard to start from pre-training a multi-modal transformer with
“ViT-B/16” features and then transfer to [7] model.



Models TL NE| SRt SPL?7
OBERT-1* [7] 12421 4294 595 53.6
Eg-1 12.551 4.054 624 563

Eis,-1 11.749 3930 626 574
Ei -1 11.739 3917 62.7 56.7
OBERT-2* [7] 11.327 4.028 61.8 56.3

Eg-2 11.760 3921 62.8 56.6
Eis,-2 12.319 3.884 63.2 56.8
BT -2 12.034 4.016 623 563
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Table 3. Performance of applying our proposed method to SotA
VLN agents on R2R validation unseen set. “-17/“-2” indicates
using the first/second way of preprocess, “*” indicates results with
our extracted “place365” features.

Models TL NE| SRt SPLt
EnvDrop™* [13] 1586 4.73 55.1 48.8
FEg 16.59 4.69 582 515

E,+ E; +CL 2098 5.14 498 433
Es+E,+CL 16.08 4.63 56.8 50.5
Eis, 17.69 4.76 56.4 489

E,+ E;;, +CL 2643 5.60 473 39.1
B, + E,+CL 1727 495 553 48.0
E 1446 4.67 573 51.1

E,+ Ej; +CL 26.54 5.77 484 389
Ejs +E,+CL 1731 4.83 555 482
Eg+Eq,+E,+CL 1585 4.67 562 498
Eis, +E4+E,+CL 1747 483 562 49.1

Table 4. Performance of training the agent on the original envi-
ronment and edited environment in different steps in curriculum
learning on R2R validation unseen set. “~CL” indicates using cur-
riculum learning, “*” indicates reproduced results.

ronment and our edited environment, the performance gap
decreases (L;s,-1 vs. By, -2).

7. Curriculum Learning

In the main paper, we train the agent on both the original
environment and the edited environment in the same batch.
This section explores using curriculum learning to train the
agent on the original environment and edited environment
in different steps. Specifically, we train the models with
two steps. In the first step, the model is trained on one of the
newly created environments. In the second step, the model
is trained on the original environments. Both steps contain
50,000 iterations with a batch size of 64. We use image
features extracted with ViT-B/16 in this experiment. For
simplicity, back translation is not applied in this experiment.

We notice that curriculum learning usually learns from
easy samples first and gradually switch to hard samples. In
our case, intuitively, easy samples should be the original en-
vironment and hard samples are our created environments.

Models TL NE| SRt SPLt
EI-16 1446 467 573 511

E-16 17.01 486 55.6 48.7
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Ef2-16  17.05 494 546 484
ET4-16 1654 495 542 477
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Table 5. Performance of training on the environments created by
masking out different number of objects on R2R validation unseen
set. “-16” indicates image features extracted with ViT-B/16.

However, the performance of models first trained on origi-
nal environment and then trained on newly created environ-
ments (as shown in Table 4) are much worse than training
in the reverse way (e.g., “E, + Eg + CL” vs. “Eg.”). We
attribute this to that the data in original environments are of
higher quality.

Besides, as shown in Table 4, the model trained with cur-
riculum learning gets lower performance compared with di-
rectly training the agent on both the original environment
and the edited environment in the same batch. This indi-
cates that more advanced curriculum learning (e.g., a better-
designed approach to rank the difficulty of the samples) is
needed to get higher performance.

We further explore using curriculum learning to train the
agent on multiple edited environments and the original envi-
ronment. Specifically, we train the models with three steps.
In the first two steps, the agent is trained on two different
edited environments. In the last step, the agent is trained on
the original environments. All three steps contain 50,000
iterations with a batch size of 64. For simplicity, back trans-
lation is not applied in this experiment as well.

As shown in Table 4, we first create a new environment
E,:, with style transfer approach. The style is sampled
from a multivariate normal distribution. We train the agent
on E, and Eg, in the first two steps sequentially in cur-
riculum learning. We observe that the performance (“FE;
+ Eg, + E, + CL”) is lower than only training on Eg;.
Similar results are observed for training on environments
E;s, and E; in the first two steps in curriculum learning
(“Eis, + Est + E, + CL”). We further experiment with
adaptive curriculum learning (aCL) to learn from easy ex-
amples to hard examples. The difficulty is measured with
path generation probability and variance. We use Bayesian
optimization to find the best hyperparameter for aCL based
on the agent’s performance of the first 10k iterations. The
best model achieves 57.6%, which is still lower than E;
only. We believe how to combine the three editing environ-
ments during training to get better performance is a non-
trivial problem and requires further investigation in future
work.



ID Environment EnvDrop-16* [13] FE-16 E;s,-16 E;Zl -16
SR SPL SR SPL SR SPL SR SPL
1 59.3 50.4 59.7 523 63.3 52.1 51.3 52.1
2 504 428 51.1 43.8 49.7  39.7 525 471
3 77.8 598 75.6  61.1 77.8 599 644 515
4 56.8 487 599 520 594 500 63.5 554
5 427 371 577 509 | 483 424 527 470
6 49.0 453 50.7  46.6 50.7 430 | 493 455
7 56.1 53.6 506  46.1 52.8 492 533 50.2
8 495 453 47.0 428 51.6 476 | 48.0 438
9 69.1 60.1 714 62.1 67.0 585 66.3 59.9
10 60.7 555 68.0  60.1 60.3 54.2 65.0 582
11 16.7 144 333 27.2 16.7 14.2 556  46.6

Table 6. The results of our ENVEDIT on different environments in validation unseen set. “-16” indicates image features extracted with

ViT-B/16.

ID Environment

EnvDrop-16* [13]

EnvDrop+BT OBERT-p365* [7]

SR SPL
1 59.3 50.4
2 504 428
3 77.8 59.8
4 56.8 48.7
5 42.7 37.1
6 49.0 453
7 56.1 53.6
8 49.5 453
9 69.1 60.1
10 60.7 55.5
11 16.7 14.4

SR SPL SR SPL
61.3 51 67.3 62.2
61 50.3 58.9 53.9
71.1 50.6 77.8 66.1
60.9 52 63 56.8
51.7 43.7 553 50.6
553 49.4 50.7 47.8
50.6 49 56.1 53.5
55.2 50.4 63.8 59.2
66.3 57.9 71.1 77.9
583 53.5 65.3 60.6
222 18.9 61.1 57.3

Table 7. The results of different VLN baseline models on different environments in validation unseen set. “-16” indicates image features

extracted with ViT-B/16.

8. Editing Different Number of Objects

We edit the objects in the original environments by ran-
domly masking out some classes in the semantic segmenta-
tion (as discussed in Sec.4.2 in the main paper) In this sec-
tion, we explore the impact of editing different numbers of
objects in the original environments. Specifically, we ran-
domly mask out 1 to 4 classes in the semantic segmentation
during the inference time of environment editing, and create

: : mq mo ms Mg
four env1rqnments respectively (EiSl R EiSl s EiSl R Eis1 ),
where EZZ; indicates masking out ¢ classes in the seman-
tic segmentation. Ej;! is the environment E7 used in the

main paper.

As shown in Table 5, the performance consistently de-
creases while masking out more object classes in the en-
vironments. These results demonstrate the importance of
balancing between the matches with the original instruc-



ID Original

Table 8. Qualitative Examples of our created environments Es;, Eis, , Ejy, .

tions and the diversity of new environments, and we find
that masking out 1 object class would empirically give the
best results in our experimental setup.

9. Detailed Results on Different Environments

We show the results of the overall averaging performance
on all unseen environments in the main paper. In this sec-
tion, we want to have a detailed look at the performance
of our model on different environments and explore which
unseen environments benefit more from our ENVEDIT. As
shown in Table 6, we observe that training on E; could
improve the performance on Environment 5 by 15.0% in

SR and 13.8% in SPL, and improve the performance on
Environment 11 by 7.2% in SR and 4.6% in SPL. When
training on E;,,, the Environment 1 gets the largest im-
provement. A possible reason is that this environment differ
from the original environment mainly in object appearance,
and our ENVEDIT creates environments with new object ap-
pearance, and thus generalize better. Besides, this indicates
that environments in the validation unseen set benefit differ-
ently from training on different created environments, and
the newly created environments contain complementary in-
formation for generalization. This points to a future direc-
tion where the agent learns from multiple new environments
to generalize better to unseen environments.



10. Analysis of Consistency Across Different
Environments

In Sec 9, we show that different environments could ben-
efit differently from different editing methods (i.e., Env5
gets 15% improvement by F,;, while Envl1 gets 38.9%
improvement by E7!). Similarly, in this section, we
show that different VLN models (EnvDrop/EnvDrop+Back
Translation(EnvDrop+BT)/OBERT-p365) will be better at
generalization to different environments. As shown in Ta-
ble 7, for VLN models trained on the original environment,
while ‘EnvDrop’ generalizes bad to Env5 (42.7%), ‘En-
vDrop+BT’ improves it by 9% (51.7%) and ‘OBERT-p365’
improves it by 12.6% (55.3%) on Env5. Thus, the improve-
ment brought by E; might be less for ‘EnvDrop+BT’ and
‘OBERT-p365’ compared with ‘EnvDrop’. Similarly, E7¢,
can benefit ‘EnvDrop+BT’ more since ‘EnvDrop+BT” still
works bad on Envll (22.2%). This explains why the best
model for each VLN model and visual feature will be differ-
ent. Nevertheless, picking any of the editing methods will
improve the performance, which demonstrates the effective-
ness of our environment-level data augmentation in tackling
the data scarcity problem. Considering both simplicity and
performance across different models, we recommend using
FEg; as the start point for future research.

11. Qualitative Examples for Generated Envi-
ronments

We show some more examples in our generated environ-
ments in Table 8. We could see that the environments gener-
ated with the style transfer approach (denoted as E; in Ta-
ble 8) maintain the semantics of the original environments
better, but the overall style is artistic. The environments
generated with the image synthesis approach (denoted as
E;s, and Ey in Table 8) bring more diversity in object ap-
pearance and are more close to real environments.

12. Limitations

We also note that there are some limitations of our work.
First, this work explores two classic style transfer and image
synthesis approaches in augmenting the VLN training data.
More advanced image-to-image translation models can po-
tentially generate environments with higher quality and thus
bring further improvement. Besides, this work dedicatedly
considers the Vision-and-Language Navigation task, but the
proposed method can be potentially used in other embodied
tasks and simulated environments with certain adaptations.
We will explore other useful and interesting tasks in the fu-
ture.
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