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1. Combined with YOLOX
YOLOX is a recently proposed one-stage detector based

on the YOLO series. Its remarkable performance and ex-
tremely fast inference speed have won the favor of re-
searchers and developers. In this paper, we investigate
whether the advanced YOLOX detector works well under
the long-tailed data distribution. Then we introduce our
proposed EFL into the YOLOX detector to help it achieve
excellent performance. The experiments are conducted on
the small and medium models of YOLOX (YOLOX-S and
YOLOX-M). The challenging LVIS v1 dataset is adopted
as the benchmark. All networks are trained from scratch
by 300 epochs with the repeat factor sampler (RFS). Un-
less otherwise stated, our experimental settings are aligned
with the original settings in YOLOX (we highly recommend
readers to refer to https://github.com/Megvii-
BaseDetection/YOLOX for more details).

As presented in Tab. 1, both YOLOX-S and YOLOX-
M perform poorly in the long-tailed scenario. We argue
that the poor performance mainly comes from two aspects.
On the one hand, the supervisor (especially the OTA la-
bel assignment strategy) in the YOLOX detector is influ-
enced by the long-tailed data distribution which results in
low-quality supervision during the training phase. On the
other hand, the classification loss in the YOLOX detectors
is the sigmoid loss which is incapable to handle the severe
positive-negative imbalance degree inconsistency problem
(as mentioned in our papers). Based on these analyses, we
make some modifications to the YOLOX detector and apply
our proposed method to it. With the following settings, the
medium model of YOLOX even achieves an overall AP of
31.0% which indicates the effectiveness of our method:
Enhancements on the YOLOX. Firstly, we replace the su-
pervisor and the predictor of the YOLOX with the settings
in our improved baseline (including the ATSS label assign-
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model loss YOLOX∗ AP APr APc APf

small

Sigmoid 15.2 2.9 11.6 24.7

FL ✓ 18.5 3.6 15.7 28.2
EFL(Ours) ✓ 23.3 18.1 21.2 28.0

QFL ✓ 22.5 11.0 20.6 29.7
EQFL(Ours) ✓ 24.2 16.3 22.7 29.4

medium

Sigmoid 20.9 5.3 17.6 31.5

FL ✓ 25.0 7.1 23.5 34.4
EFL(Ours) ✓ 30.0 23.8 28.2 34.7

QFL ✓ 28.9 16.8 27.2 36.1
EQFL(Ours) ✓ 31.0 24.0 29.1 36.2

Table 1. Results of the YOLOX detectors on the LVIS v1 dataset.
All experiments are trained from scratch by 300 epochs with the
repeat factor sampler (RFS). The YOLOX∗ indicates the enhanced
YOLOX detector that is trained with our proposed improved set-
tings. FL and QFL indicate the focal loss and the quality focal
loss, respectively. EFL and EQFL are the methods proposed in
this paper that indicate the equalized version of FL and QFL.

ment strategy, IoU branch, and increased anchor scale). The
IoU loss combined with the L1 loss is adopted as the local-
ization loss (YOLOX has the same behavior during the last
15 training epochs). We denote the YOLOX detector com-
bined with our improved settings as the YOLOX∗ series. As
shown in Tab. 1, with these enhancements, the YOLOX∗

outperforms the YOLOX by a large margin (from 20.9%
AP to 25.0% AP on the medium model) which indicates
that the supervision in the YOLOX∗ is more reliable than
the YOLOX.
Adapt EFL to the YOLOX∗. Although the YOLOX∗ per-
forms better than the YOLOX, its training process is still
highly biased towards the frequent categories (APr is only
7.1% on the medium model). Thus we adapt our proposed
EFL to the YOLOX∗ to address the long-tailed imbalance
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issues. It is worth noting that we empirically set the weight
decays of bias parameters in the last layer of the classifica-
tion head to 0.0001 (the original setting in the YOLOX is
0) because we discover from experiments that this setting
is of vital importance on the performance of EFL. With-
out this slight modification, the gradient collection mech-
anism in EFL will malfunction. As presented in Tab. 1,
combined with the YOLOX∗ series, EFL achieves excellent
performance in the long-tailed situation. On the medium
model, it reaches an overall AP of 30.0% that outperforms
the YOLOX-M∗ detector by 5.0% AP. What’s more, it
greatly improves the performance of the rare categories with
+16.7% AP. The results demonstrate that our proposed EFL
is a very practical approach that could greatly alleviate the
long-tailed imbalance problem for almost all one-stage de-
tectors.
Equalized Quality Focal Loss. Meanwhile, we also in-
vestigate the performance of the quality focal loss (QFL)
combined with the YOLOX∗ series. It could be concluded
from experiments that QFL achieves more competitive re-
sults compared with the focal loss. We wonder whether the
performance of QFL could be further improved by drawing
ideas from the EFL. Then the class-relevant modulating fac-
tor is designed for the QFL and we denote the novel loss as
the equalized quality focal loss (EQFL). The EQFL of the
j-th category is formulated as:

EQFL (p) = −mj
f (y

′ log (p) + (1− y′) log (1− p)) (1)

where mj
f = wj

f (|y′ − p|)f
j
f is the specific form of the

modulating factor in EQFL. The weighting factor and the
focusing factor (e.g. the wj

f and the f j
f ) are the same as them

in EFL. It should be noticed that y′ ∈ [0, 1] here is the IoU
score for a positive sample and 0 for a negative sample. Our
proposed EQFL achieves 31.0% AP on the medium model.
We hope that the impressive performance and powerful gen-
eralization ability of our proposed method could inspire the
community to raise more attention on one-stage detectors in
the long-tailed case.

2. Derivative of EFL
The derivative is a crucial part of the parameter gj in

EFL. It could be used to calculate the accumulated gradient
of positive samples and negative samples. For reference, the
derivative for EFL of the j-th category is:

dEFL

dx
=

γj (2y − 1)

γb
(1− pt)

γj (
γjpt log (pt) + pt − 1

)
(2)

where y ∈ {0, 1} specific the ground-truth label of the bi-
nary classification. Plots for the derivatives of different cat-
egories are shown in Fig. 1. For all categories, EFL has
small derivatives for easy samples (xt > 0). As γj

v increases
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Figure 1. Derivative of our proposed EFL. xt = (2y−1)x, where
x is the output predicted logit and y ∈ {0, 1} specific the ground-
truth label of the binary classification. In this figure, different col-
ors indicate different categories. We set γb = 2 and ignore the
impact of αt.

loss AP AP50 AP75 APs APm APl

FL 42.3 61.0 45.7 26.7 46.2 53.0
EFL(s=2) 42.4 61.0 46.1 26.5 46.2 53.2
EFL(s=4) 42.3 61.2 45.6 26.6 46.1 52.9
EFL(s=8) 42.2 60.8 45.6 26.4 46.1 52.7

Table 2. Results in the COCO dataset. All results are from the
improved baseline with the ResNet-50 backbone. The models are
trained by a 2x schedule with the random sampler.

(e.g. the category becomes rare), EFL gradually improves
the gradient contribution of hard samples, resulting in more
concentration on learning them.

In addition to manually calculating the gradients, an al-
ternate approach is to register a backward hook on the
classification loss function to get the gradients of positive
and negative samples. Meanwhile, when adapting EQLv2
to one-stage detectors, we calculate the gradients of the
EQLv2∗ (i.e. EQLv2&Focal, the combination of EQLv2
and focal loss). Here we also show the derivative for the
EQLv2∗:

dEQLv2∗

dx
= wt (2y − 1) (1− pt)

γ
(γpt log (pt) + pt − 1)

(3)
where wt indicates the gradient-guided weight similar to the
weight in EQLv2. It is worth noting that the backward hook
is the same applies in this situation.

3. Performance on COCO Dataset
As we claim in this paper, EFL is equivalent to the focal

loss in the balanced data scenario. To verify this analysis,



method loss AP APr APc APf

PAA EQLv2∗ 24.1 16.5 22.1 29.8
EFL 25.6 19.8 23.8 30.2

ATSS EQLv2∗ 25.2 15.0 24.3 30.8
EFL 25.8 18.1 24.5 30.6

Baseline†
EQLv2∗ 26.8 17.7 25.3 32.6

EFL 27.5 20.2 26.1 32.4

Table 3. Comparison of EQLv2∗ and EFL, Baseline† is the im-
proved baseline.

we conduct experiments on MS COCO dataset. COCO is a
widely used object detection dataset that includes 80 cate-
gories with balanced data distribution. The ImageNet pre-
trained ResNet-50 is adopted as the backbone, and the net-
works are trained with our proposed improved baseline. We
train the focal loss and our proposed EFL by a 2x schedule
with the random sampler. All other settings are consistent
with those in LVIS.

As presented in Tab. 2, the scaling factor s has little ef-
fect in the COCO dataset, and all results with EFL achieve
comparable performance with the focal loss. This indi-
cates that our proposed EFL could maintain good perfor-
mance under the balanced data distribution. EFL does not
rely on pre-computing the distribution of training data and
could operate well with any data sampler. This distribution-
agnostic property enables EFL to work well with real-world
applications in different data distributions.

4. Compared with EQLv2*
We compare the performance of EFL and EQLv2∗ (i.e.

EQLv2&Focal) in Tab. 3. Given stronger baselines under
different high-performance one-stage detectors, EFL sta-
bly achieves a non-trivial improvement compared to the
EQLv2∗. Especially, for rare categories, EFL consistently
outperforms EQLv2∗ by about 3% AP on these detec-
tors. As mentioned in our paper, EFL focuses more on the
learning of categories with extreme positive-negative imbal-
ances. Such property enables EFL to perform well on rare
categories. And the impressive improvements of EFL in-
dicate that it has more advantages for addressing the one-
stage long-tailed tasks than simply combining EQLv2 with
the focal loss.

5. Compared with the NORCAL
We also compare the EFL with the NORCAL which is

a recently proposed model calibration method. We adapt
the NORCAL to the Faster R-CNN framework trained by
a 2x schedule with the repeat factor sampler. As shown in
Tab. 4, with the ResNet-101 backbone, EFL outperforms

backbone method AP APr APc APf

ResNet-50 NORCAL 26.6 18.7 25.6 31.1
EFL 27.5 20.2 26.1 32.4

ResNet-101 NORCAL 27.8 19.4 26.9 32.5
EFL 29.2 23.5 27.4 33.8

Table 4. Comparison of NorCal (Faster R-CNN+RFS) and EFL.

the NORCAL by 1.4% overall AP with 4.1% AP improve-
ment on rare categories. One thing worth noting is that
although the NORCAL provides the extension to multiple
binary sigmoid classifiers, it performs poorly when com-
bined with the one-stage detectors. We believe that the poor
performance comes from the huge number of negative sam-
ples under the one-stage framework. All the results indi-
cate that EFL could train the one-stage long-tailed detectors
to achieve better representations rather than only adjust the
logits of different categories.

6. Qualitative Analysis
The qualitative analysis and the failure cases of the EFL

are showcased in Fig. 2. The EFL is compared with the
improved baseline (FL) to demonstrate its strength. We
only show the detected boxes of rare categories with con-
fidence scores greater than 0.2. It could be concluded from
Fig. 2 (top) that the EFL detects the rare categories more
accurately with higher confidence scores than the improved
baseline. However, there are also some failure cases. For
example, many pennants are missed detected by the EFL.
And the three tachometers are detected into one. These phe-
nomena suggest that the performance of EFL needs to be
further improved in some dense and hard situations. Mean-
while, since the EFL only cares about the classification
problems, the localization of some objects are not so pre-
cise (e.g. the armor and the chap).



Figure 2. Qualitative Analysis (above the dotted line) and Failure Cases (below the dotted line) of EFL.
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