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A. Temproal Feature Extraction

We add Fig. 1 to illustrate the skip connections in the
backbone neural networks. Skip connections within CNNs
are designed to jointly involve high-level semantics and
low-level finer details in output feature representation. Spe-
cially, we add three skip connections in ResNet and gradu-
ally up-sample the features from a deeper layer. The final
feature representations are down-sampled with a ratio of 4
compared to the original inputs in this U-Net structure.

B. Multiple Object Tracking: Evaluation and
the Decoding Algorithm

We adopt the series of MOT metrics [4] for evaluation.
We pick several key metrics in experiments: MOTA (Mul-
tiple Object Tracking Accuracy), MOTP (Multiple Object
Tracking Precision), ID switch (IDSW), track fragmenta-
tions (Frag.), mostly tracked (MT), and partially tracked
(PT). The MOTA score is calculated by

S°,(FN; + FP; + IDSW,)
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where t is the frame index, GT is the number of ground-
truth objects, FN and FP refer to false negative and false
positive detection. The value of MOTA is in the range
(—00,100]. It can be deemed as the combination of de-
tection and tracking performance, and is widely used as the
main metric for accessing multiple object tracking quality.
MOTP is the average IoU value on all ground-truth bound-
ing boxes and its assigned prediction. It describes the lo-
calized precision. The rest of these metrics all reflect the
quality of predicted tracklets. For detailed definitions and
calculations of MOT metrics, please refer to [4].

We attach a decoding algorithm for multiple object track-
ing. The tracking algorithm mainly follows [9] which asso-
ciates objects from successive frames purely based on the
cost of Euclidean distance. The position of an object in
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the previous frame is complemented with a predictive po-
sitional tracking offset d to infer its potential position in the
next frame. Then, objects in previous and current frames are
associated and propagate the object’s ID in a bipartite graph
with a greedy algorithm based on the distance between their
center 2D positions. Empirically, we do not further extend
a tracklet if it cannot find a matched candidate.

Algorithm 1 Multiple Object Tracking Decoding

Require: 7'~ ! = {(c,id)z_l}Jle: tracked objects in the
previous frame ¢ — 1; BY = {(¢,v,d)!}Y , heatmap
predictions of object centers ¢, confidence v, and track-
ing offsets d. Bt are sorted in a descending order ac-
cording to v. Distance threshold k. Birth threshold b.
S+ 0, T+ 0
W « Cost(Bt, Tt~ 1)
fori < 1, N do
J < argmin g g Wi;
if Wi j S k then
Tt T U (&, idzfl) > Propagate matched id
S+« SU{j} > Mark candidate j as tracked
else if v; > b then
Tt « T* U (&}, New id)
end if
: end for
return 7"
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C. Ablation Study

We add an experiment on split train good weather in
Fig. 2 to analyze the change of the number of the selec-
tive feature vectors for temporal relational layers, where
we vary the value K from 2 to 20. The detection perfor-
mance consistently improved before K reached 8, but drop
when continually increase the value of K. The scenario
indicates involving redundant objects in relation modeling
could slightly corrupt the temporal relation learning. The
value of K should be selected based on the average number



— Skip Connections

—J

W@%HL

J Multi-scale Feature Concatenation

Feature Vector

Positional Encoding

Figure 1. The backbone networks are inserted with several skip connections to collect features at different scales for predictions. Features
selected for temporal relations modeling are attached with positional encoding to reveal the locality of objects.
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Figure 2. Detection performance with varying K value.

of objects per frame but not including excessive noise. We
empirically set K to 8 in our experiments.

D. Additional Visualization Result

We present additional visualization results in Fig. 3 on
object detection. In the detection, green bounding boxes
are ground-truth annotations, while red are predictions. The
same observations are confirmed in the additional visual-
izations. False positive predictions are mainly due to the
‘ghost’ objects in radar signals, and the rest are localized in
the surroundings or outer space where the angular resolu-
tion is low.

E. A Short Review of Radar Dataset

Besides the algorithmic design, many radar datasets are
emerging which are crucial for machine learning research.
Among these datasets, radar data are currently presented in
various data formats, i.e. radio frequency heatmap, radar
reflection image, or point cloud. RadarScenes dataset [6]

provide abundant point-wise annotations with doppler for
automotive radar. However, there is no bounding box an-
notation for objects. Carrada dataset [5] records the range-
angle and range-Doppler heatmap. Their data are mainly
recorded in experimental sites like parking lots but not in
real driving environment. CRUW dataset [8] offers radar’s
radio frequency images with camera-projected annotations.
nuScenes [2] contains multi-modal data including Lidar,
camera, and radar. However, radar data in nuScenes only
afford sparse point cloud, while the Lidar and camera data
are the main advantage of this dataset. MulRan [3] and Ox-
ford [1] datasets present high-resolution radar images for
urban driving scenarios but without object-level annotation.
In our paper, we conduct detection and tracking experi-
ments on point cloud-based radar images in adverse weather
from Radiate dataset [7], and every significant object has
bounding box and tracking ID annotations for training.
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