Supplemental Material

A. Additional Experiments on the EPFL dataset

We test MatchFAME on the 6 EPFL datasets following
the experimental setup of [13]. Each dataset includes 8 to 30
images, unlike the large number of images in the Photo Tourism
datasets. Given each dataset, we generate and refine the initial
keypoint matches with the same procedure introduced in [13].
We follow their convention and estimate the universe size with
m=2[M/n]. We implement MatchFAME with its default pa-
rameters, though with two changes described below. Indeed, the
EPFL dataset contains a lot of noisy edges and thus the weights
produced by PPM within the original MatchFAME algorithm
are often small. Furthermore, note that Proj in (9) is not scale
invariant and that the resulting small weights may lead to overly
sparse refined matches. Therefore, we slightly changed the
implementation of MatchFAME to overcome this issue. First,
in order to obtain a dense initialization of partial permutations
using MST, instead of assigning 1 to a random element for
each zero column, we assign 1 to a random element for each
zero row. Since the number of rows is larger than the number
of columns, this modification results in a denser initialization
of [Pj(o)] je[n) than that of the original MatchFAME. Second,
to make sure that the final output is also sufficiently dense, we
drop the step of the weights’ normalization within the PPM
iterations, which is described below (9) (this will increase the
overall scale of the edge weights and thus the projected matrix
is expected to be denser). We remark that these two changes
help alleviate the over-sparseness of the final output and ends
up with a higher ratio between the number of refined matches
and the number of initial matches, which we denote by # M.

In addition to this version of MatchFAME, we also test
Spectral, MatchEIG and MatchALS with the same setting
as [13]. Note that the ’ground truth’ is obtained by estimating
the projection distance of key points on the epipolar line instead
of labeling by hand. Therefore the recall score is not a good
benchmark on real data. We thus only report the resulting
precision, number of remaining edges and runtime in Table 4.

MatchFAME achieves the highest precision of all methods
in all datasets. Observing # M, we note that MatchFAME
has around 20% fewer matches remaining compared to all
algorithms, but as long as there are enough matches for
each edge, one can reliably compute relative rotations and
translations for SfM tasks. We believe removing around 20%
more matches is not an essential drawback. Furthermore,
MatchFAME is faster than the other methods. In conclusion,
MatchFAME can achieve a reasonable estimate of matches
within a significant short amount of time.

B. Clarifications

We clarify some definitions and expand on various claims
mentioned in the paper.

B.1. More on Cycle Consistency and Inconsistency

We referred to a cycle ijk as consistent whenever X;; Xz, <
Xiks Xijlci < in and inXij < ij. Note that Xinjk
is a binary matrix with ones whenever there are paths of lengths
2 between keypoints of images ¢ and k and X, is binary matrix
with ones whenever there are paths of lengths 1 (single edges)
between keypoints of image ¢ and k. That is, X;; X3, < X1
means that if keypoints ¢; € [m;] and t;, € [mg] (in images ¢
and k, respectively) are both matched to a keypoint ¢; in image
7, then they are matched to each other. Therefore, any cycle
ijk with corresponding partial permutations X5, Xr, Xg;
is consistent if and only if for any ¢; € [m;], t; € [m;] and
tr, € [mg]: If two of the events X;;(¢;,t;) =1, Xr(t; tr) =1,
Xi(tk,t;) =1 hold true, then the third one holds true as well.

This equivalent reformulation of cycle consistency
further clarifies the definition of d;;; in (4). For fixed
X, Xk, X1i € P12, the denominator of the fraction in (4)
can be viewed as the number of combinations of three keypoints
a, b, ¢, such that at least two of the three events

X;j(a,b)=1, X;r(bec)=1, and Xy;(c,a)=1 (10)

hold. Furthermore, the numerator of the fraction in (4) can be
viewed as the total number combinations of three keypoints
a, b, ¢, such that all the three events in (10) hold. Thus, the
fraction in (4) indeed measures the level of cycle consistency,
and consequently d;;;, measures the cycle inconsistency.

We remark that an inequality of two full permutation matrices
must be an equality. Therefore, for permutation synchroniza-
tion the above definition of cycle consistency is equivalent with
Xinjk = sz (or equivalently, Xj}cX]ﬂ‘ :in or X}“'Xij =
X},; or X3,; X;; X3, =1I). That is, our definition of cycle con-
sistency is a direct extension of the one in group synchronization.

B.2. Cycle-verifiability Helps in Verifying Matches
in Cycles

We further interpret the cycle-verifiable condition and clar-
ify its name. We claim that if ¢jk is a good cycle (w.r.t. ij)
ensured by Definition 1 with a € I; and ¢ € I;, then one can
verify whether a and ¢ correctly match (i.e., h(a) =h(c)) using
be Ij;,. Indeed, since b matches a and k € G, h(a) =h(b). If
b and ¢ match then since k € G;; h(b) =h(c) and consequently
h(a) = h(c). Assume on the other hand that b and ¢ do not
match. If b matches another point ¢/, then since k€ G, h(b) =
h(c') # h(c). If b does not match any point in U}, then since
ke Gy, h(b) € h(U;) (otherwise there exists ¢ € U, such that
h(c")=h(b) and since k € G there has to be a match between
band c’.). Since h(c) € h(U;) and h(b) € h(U;), h(b)#h(c).

C. Proof of Theorem 1

The proof establishes two lemmas, Lemmas 1 and 2, and
then uses them to conclude Theorem 1. It is rather technical



Algorithms Initial MatchEig Spectral MatchALS PPM MatchFAME
Dataset (ours)
n|m| PR |PR|#M|T | PR #M| T || PR |#M| T PR [#M| T || PR |[#M | T
Herz-Jesu-P25 || 25 | 517 || 89.6 || 94.2| 73 |72 (|92.2| 81 [ 125/ 933 | 83 | 9199 || 92.5| 88 | 125 (| 95.0 | 78 |15
Herz-Jesu-P8 || 8 | 386 || 94.3 |[952]| 97 | 1 |[953]| 92| 4 |/959| 76 | 155 ||954|94 | 5 ||959|83 |3
Castle-P30 30445 71.8 || 84.7] 55 |64 80.6| 72 | 99 || 804 | 76 | 13583 (| 80.2 | 77 | 112 | 879 | 61 |15
Castle-P19 19 1314 70.1 || 79.7| 57 |23 763 | 76 | 21 ||77.0| 74 | 1263 ||77.5| 76 | 33 || 83.0| 56 | 4
Entry-P10 10 [ 432 754 || 799 | 78 |11 | 82.1| 78 | 30 ||77.3| 77 | 322 || 80.7 | 83 | 34 ||831| 69 | 5
Fountain-P11 || 11 | 374 | 942 || 954| 81 | 8 ||954| 93 | 14 ||957| 82 | 333 |[956| 94 | 18 || 96.7| 81 | 5

Table 4. Performance on the EPFL datasets. n is the number of cameras; 7, the approximated m, is twice the averaged m; over i € [n]; PR refers
to the precision |E'N Ey|/|E|, which is expressed in percentage (the higher the better); #M is the ratio (expressed in percentage) between the
number of refined matches and the number of initial matches; 7" is runtime in seconds.

and not so easy to motivate. In order to provide more intuition,
we added some clarifying figures.

Convention for figures: In all of these figures, we designate
by green lines good keypoint matches, by red lines bad keypoint

matches and by dashed orange lines missing keypoint matches.
All of these occur between keypoints of two different images.

On the other hand, matches between keypoints in an image
and universal 3D keypoints are designated by black dotted lines
(these correspond to our formal h function). We further color
the universal 3D keypoints (in Uj;), which represent elements
of Uf;’()d, by green. We also color the universal 3D keypoints,
which represent elements of U, i‘}f"d, inred. In Figure 5, we slightly
extend the latter convention and explain it in its caption.
Terminology Review: Recall that na = Tr(X;; X5 Xk:),
m is the number of all 3D keypoints, 1m;; is the number of 3D
keypoints that correspond to the 2D keypoints of images ¢ or j
and among these, m??d is the number of keypoints that match
wrong keypoints in the other image, or match no keypoint if a
ground-truth match exists. We also denote the number of the

rest of points by m&> (that i, mf;’()d =m; —m?) and recall

ij
that these keypoints match the ground-truth keypoints or, do not

match any keypoint, if no ground-truth matches exist.

C.1. Upper Bound for the Cycle Inconsistency of
Good Edges

This section includes the proof of the following lemma:
Lemma 1. For any ij € Eg, diji, <m(sj,+57)-

We remark that in the case of group synchronization,
in particular, PS, one can easily show that for any ¢j € F,
|diji — 5751 < s, +57, (see Lemma 1 of [11]). Consequently
for ij € Ey, diji, < sj), + s}, However, in PPS, without the
full group structure with a bi-invariant metric, it is harder to
prove the weaker bound of Lemma 1. The proof below involves
various discrete combinatorial arguments.

Proof. Assume first that no = 0 and note that (4) implies
dijr = 1. Since d;j; # 0 and ij € Ey, sj, and 7, cannot be

both zero (otherwise this and the fact that ¢j € E; imply that
ijk is cycle-consistent and thus d;;;, = 0). Without loss of
generality, assume 7, > 0. We note that

bad
. mjk
mjk

1
_m7

which implies the desired bound:
1 * * *
dijr=1=m- - <msj <m(sj,+55;)-
Assume next that na >0, or equivalently,

na>1. (11)

The next arguments require additional definitions and ob-
servations. We recall that any element of I; represents a 2D
keypoint in image ¢. This keypoint is associated with the index
vector (7,7), where j=1,...,m; and we can thus view I; as the
set of m; index vectors. For cycle ijk, (a,b,c) € I; X I i x I} is an
(i,jk) tuple if there is a match between a and both b and ¢ (the
match can be either good or bad). If (a,b,c) is an (i,jk) tuple
and there is no match between b and ¢, then we refer to (a,b,c)
as abad (i,jk) tuple, otherwise, it is a good (¢,jk) tuple. For ex-
ample, in Figure 5, there are three (Z,jk) tuples: (p; 2,05,1:P%,1)s
(Pi,3:05,3:Pk,2) and (i 4,p;,2,Pk 3). We note that (p; 2,p; 1,pk,1)
and (p; 4,pj2,pk,3) are bad (i,5k) tuples and (p; 3,p; 3,k 2) 1
a good (4,5k) tuple. For cycle ijk, we denote by A; j, the set
of (4,jk) tuples in I; x I; x I, by A?de the set of bad (i, jk)
tuples and by Aff}o,g the set of good (7,7k) tuples.

Recall that for a cycle ijk, n; = nnz(X; X;;), n; and ng
are analogously defined, and na = Tr(X,;; X, X};). Also
recall the notation p; ; for elements of ;. We note that (a,b,c)
is an (4,5k) tuple if and only if (ff) a=p; v, b=Dj ., c=Pkw
and both Xj;(w,u) =1 and X;;(u,v) =1 (so p;, matches
to both p;, and pg ). We further note that the latter two
requirements are equivalent with X3,; X;; (w,v) = 1. Indeed,



since X, Xij(w,v) = 3 e pm,) Xki(w, u') Xy5(u, v) and
X X;; is a partial permutation, then X; X;;(w,v) = 1 iff
Xiii(w,u) = X;;(u,v) =1 for some u & [m;]. Therefore

|4; jk|=n;
By the same way we note that
|Ajkil=n; and |Api;|=mns.
Similarly, note that (a, b, ¢) is a good (i, jk) tuple iff
a=P;u> b=DPj v, ¢=Dhw> Xii(w,u) =1, X;;(u,v) =1 and

X i (v,w) = 1. The latter three requirements are equivalent
with X;; X5 X (u,u) =1. Indeed, the following equation

Xinijki (u,u) =

Z X,-j(u,v

v’ €[m;],w’ €[my]

NX k(0 w") X (w' u)

and the fact that X;; X, X}; is a partial permutation imply
this equivalence. Therefore,

|A Jk|—nA and |A jk\ n;—NA.

Similarly, we conclude that

bad

\Abadl|7 —na and |A,”] =nE—NA.

Using these observations and (4), one can rewrite d; ;1. as follows

ad bad bad
4] AP | 4| Abad
dijk | jk| | 7, kz' ‘ k,ij ) (12)

| ARG 4| AL | 4| AR [ +3na

Let us assume that (a,b,c) € AP} and show that
h(c) e URIUURY. (13)

The assumption ij € E, implies that there is a good match
between a and b.

We claim that if there is also a good match between a
and ¢, then h(b) = h(a) = h(c) € U;; NUy NUjk. Indeed,
assume @ = Py, b = Dpjy, ¢ = prw and h(a) = 1, ie,
P(u,l) = 1. Because there exists a good match between
a and b, X75(u,v) = Xj;(u,v) = 1. Since X};(u,v) =
Py P (u0) =Y ey Br (u,d) Py (v,d) and Py is a partial
permutation, P (v,l) =1 and thus h(b) = I. Similarly, since
there exists a good match between a and ¢, P} (w,l) =1 and
h(c)=1. Therefore h(a)=h(b) =h(c)=1€U;; NU;x NUjy.

Since (a,b,c) € A?de, there is no match between b and ¢ and
thus h(c) € U]t.’ad, which implies (13).

If on the other hand, there is a bad match between a and c,
then h(c) € U, which also implies (13).

In view of (13), the function f(a,b,c) = h(c) maps
Abad ik ©0 Ui bad U}’,id. We note that this function is injective.
Indeed, smce X1 and X, are partial permutations, for any

U UULU Uy,

12 3 4 5

[ Pi2
I; | Pjz | I
| Pi3

Pr1 Prk2 Pk3

I

Figure 5. A demonstration for clarifying the definition of (,jk) tuples,
good (i,7k) tuples, bad (i,jk) tuples as well as the function f. The
actual use of the figure is clarified when it is referred to. Unlike other
figures (that focus on points in U;; and not in Us;; UUjx, U Usy), the
red dots correspond to keypoints in U} U Uk Pad 7% and the green
dots correspond to the rest of keypomts in U” UU;r UUy;. We note
that Ui = {5}, U ={2} and U} =2

h(c)e UbadUUj‘?ad, where ¢ € I, if there are ¢ and b in I; and
1;, respectively, such that there are matches between them and
c and f(ab,c)=h(c), then a and b are unique. Figure 5 demon-

strates f and its proven injectivity in a special case. In this case,
AP = {(Dia052:D.3), (Di2,05,1:0%.1) s [ (Di,4,D52:P8,3) =
h(pr,3)=5€ UK and f(pi2,pj1,0%,1) =h(pr1) =2€ UG

By the cardlnahty property of an injective map,

| ajdk|<| bdd bad|<| bdd|+‘ badl_ Izjlid"" bdd
Similarly, the same bound holds for \Ag"‘,‘;\ and \AZ“‘M and
consequently,

| AT+

AR ARG <3(md+mb. (14

Therefore the combination of (11) and (14) with the definition
of s7. as well as s;fk (i.e., noting that s}, = m';’,";d/mm =

goo

lfmfz(’d/m,;k and s :m';.‘}‘cd/mjk =1-m" /myy) yields

ARSI+ AT+ AR

dijr= "
T AR AN ARG [ +-3na
3( bad+mbad)
— 3( bad+mbad)+3
bad
_ 3m/ b]z;d 3m d
~ 3mid+3 3mb“d+3
_ 3 35jk
* 3

*
Smiksik+mjk5jk

<m(sj,+5j)-



C.2. Lower Bound for the Averaged Cycle Incon-
sistency Among Good Cycles

This section includes the proof of the following lemma:

Lemma 2. If G=(V,E) is p,-cycle verifiable, then

1
~pus); < > dijp Vij€eE. (15)
3 \Gulkec

Proof. We assume several cases.

Case I: 5 € E4. The left hand side of (15) is zero and its right
hand side (RHS) is also zero since for any ¢j € I/, and k € G5,
di k= 0.

Case II: 75 € Ep, and k€ G;;. Denote

bad |

ik = jk\+|Abad |+ A%

7,k kgl

and note that in view of (12)

DR g
kG, vea, NVijk T3na

We thus need to lower bound the RHS of (16) in order to
conclude (15).

We first derive the bound na < m;?’;-md. Figure 6 demonstrates
the definitions below and the desired bound in a very special
case. Let D, ;;, denote the set of indices of diagonal entries of
X X 1, X} that equal 1. Note that |D;;| = na due to the
fact that na =Tr(X;; X 5 Xx;). Also, since X;; X 5, Xy, is of
size m; X m;, Dyji C [m;]. We can thus assign for d € Dy,
Pia = a € I;. Because X;; X, Xri(d,d) = 1, there exists
1<u<m; and 1 <v <my such that X;;(d,u) = X, (u,v) =
Xj:i(v,d) = 1. Therefore, we note that for b:= p; ,, € I; and
€ := Pk € I, there exist matches between a and b, b and c,
as well as c and a. Since k € G, jk € B, and ki € E; and
thus h(b) = h(c) = h(a) (see the same argument in the para-
graph below (13), where it is enough to just assume that either
Jk € E4 or ki € E,); we denote the latter common value by (.
Therefore P;(a,l) = P;(b,l) = X;(a,b) = 1. By definition
of U, ig;md, leU, f;x’d. Let fi;x be a function from D, to U, Z.g]fmd
such that f;;,(d) =1. We note that it is injective since for any
d#d € Djjk, pia# pia» therefore h(p; q) # h(pi a'). By the
good

cardinality property of an injective map, na < |U; ’°°°d\ =ms;

Next, We prove an upper bound of N; bad. We assume
without loss of generality that (a,b,c) € Abad Smce tk,jke E,,
the matches from a to ¢ and from b to ¢ are correct. Therefore,
the match from a to b is wrong and h(a) € U, Denote by

: Abd ik U}}?‘d the function which maps (a,b,c) € A}jdjdk
to h( ) € U, Figure 7 illustrates g; in a special case. This
function is injective since for any = € U] bad, g; (T !(z) contains
at most one element (a,b,c) € Abdd Indeed, if g;(a,b,c) =z,
then there must exist a € I; such that h(a)=z, cin Ij, such that

there is a match between a and c, and b in I; such that there is

Pr1 Prk2 Pk3

I

Figure 6. An illustration of na, D;jk, fijx and m’;’?"d. Note that na is
equal to the number of green triangles with vertices in I;,/;,1). Since
there is only one such triangle, na =1. This triangle (with keypoints
Di,4,D5,2,Pk,3) 1s associated with the keypoint in /; with index 4 and
thus D; ;= {4}. Since it is also associated with the universal keypoint

with index 4, the function f;;;, maps 4 to 4 € Ug‘"’d At last, note that
good |Ugood| _

J
Pk1 Pr2 Pk3

Iy

Figure 7. An illustration of g;, g;;, and the injectivity of both functions
in a very special case. In this example, the only element of A% ik 1

(pi,2,Pj,1,Pk,1)- Since we defined g;(a,b,c) = h(a), we obtain that
gi(piyg,pj,hpk,l) = h(pig) =2€ UZad. Note that Ug(-ld N h([k) =
{2,3}. Recall that the function g;;, maps z € Uf*Nh(Ix) to the bad
(,k1) tuple or bad (k,zj) tuple that involves c € Ij, with h(c) =z. In
this example, the function g;;,, maps 2 € U;; to the bad (4,jk) tuple
(pz‘yz,pjyl ,pkyl). It maps 3e€ Uij to the bad (k,l]) tuple (pk,%pi,g,pj,g).

a match between a and b (and no match between b and ¢). Note
that there is a match between at most one keypoint in I3 and a
and thus there is at most one such c. Similarly, there is at most
one such b. Since there is at most one keypoint in /; which
corresponds to the 3D keypoint z, there is at most one such a.
The injectivity of g; implies |Abad | <|U; !’?‘d| =m b“d . Similarly,

| AU | <mb and | AR | <mbad Thus, for any k €G,j

bad bad
0< NP < 3mbd, a17)

Next, we establish a lower bound of N4l For this
purpose, we construct an injective map g;; », from Ul-b;‘dﬂh(l k)
to All’ajdk U Alj’a,‘iz U Abad It will allow us to lower bound

Ny = AR+ |A§’a,‘jz\ + [AR] by the cardinality of



U N h(Iy). Note that U C Uy; = h(I;) Uh(I}). Therefore
any element of Ubadﬂh(lk) is elther in h(I;) or h(I;)\h(L;).

In the case where = € U Nh(I;) and z € h(I;), we will
show that there exist either (a b,c) € AP or (c,a,b) € AP,
such that h(c)=z. In the case where x € U Nh(I}) and z €

h(I;)\h(I;), then one can similarly show that there exists either
(b,e a) € A?agl or (c,a,b) € Ag“fj such that h(c) =x. These argu-

ments induce a map g;; 1, from U Nh(I) to ARG UAMLU
Agafj which maps x to its correspondmg bad tuple. Since h(c)=
Z, gij % 1s injective. Figure 7 illustrates g;; ;. in a special case.
We thus assume that 2 € U NA(Iy,) and = € h(I;). Note
that the latter requirement implies the existence of a € I; such
that h(a) = x. Since x € h(I}), there exists ¢ € I}, such that
h(c) =1 and since ik € E, there is a good match between a and
c. Note that there cannot be a good match between a and any
be I;, otherwise x & Uibfd. Therefore, there are two cases to con-
sider. In the first case there exists b € I; such that there is a wrong
match between a and b. This implies that /(b) # h(a) and since
we showed above that h(a) = h(c), we conclude that h(b)
h(c). The latter observation and the fact that jk € E,; imply that
there is no match between b and ¢ and thus (a,b,c) is abad (4,jk)
tuple, that is, (a,b,c) € A% In the second case, there exists
be I such that h(b) = h(a), but there is no match between b and
a (the previous case considered the scenario where there exists
be I such that @ and b match; furthermore, if h(a) # h(b) for all
be I, then z € UE™). Since h(a)=h(c)=h(b) and jk € E,,
there is a match between b and c. Therefore, (c,a,b) is a bad
(k,ij) tuple, that is, (c,a,b) € Ab“d Following the above ideas,
this concludes the injectivity of gmk. This injectivity implies

S Lwentroy =100 R(1L)| < | AR, UASE U AR
mGUib;d

bdd

< ‘ Abdd zgk

1,7k

|+‘Abdd

7,k

H_|Abdd

k,ij (18)

In order to apply (18) we lower bound a certain sum of
1{zen(1y,)y- Our argument assumes that x € Uib;d. Since x € Uy,
we conclude WLOG that x € h(I;). Therefore there exists a € I;
such that h(a) = z. By the p,-cycle verifiability condition, a
is verifiable w.rt. ¢j in at least p, |G;;| good cycles. For any
such cycle ijk that a is verifiable in, let b € I, match a (for
convenience, we demonstrate x, a and b in Figure 8). Since
1k € Iy, the match between a and b is a good match and thus
x=h(a)="h(b). Since b€ Iy, h(b) € h(I}) and thus = € h(I}).
That is, we have proved that if £ € G;; and a is verifiable in
ijk, then = € h(Iy). We have at least p,|G;;| such k’s and thus

Z 1{16h(1k)} va|Gij| for any Z‘GUL‘J‘. (19)

keGy;

‘We combine the above two inequalities as follows. Summing
both sides of (18) over k € G, exchanging the order of

I

Figure 8. Visual demonstration of keypoints involved in the argument
for bounding ZkeGm Lwen(ny-
summation and applying (19) result in

pv|G1J|mbdd pv|Gij|lUib;d‘§ Z Nz‘t’;lg-
keGij

(20)

Using the above bound we will bound from below

bad
NZJk

Z Nbdd

ood
keGy; * igk +3mg

and we will then use (16) to conclude the desired inequality.
We denote

good

T
F(x)=—— where 3m 21
(x) prw = 21)

Note that F(0)=0,

3mbad
F(3ml?@d)— 7”‘1 S5
Smbad + 3mg°° J

and F'(x) is concave. Applying the definition of F’, Jensen’s
inequality, (20) and (21) yield

bad
Z ka § :F bad
Nbad ?>00d ”k
keGij; wk keGij
ba,g bad
17 (%]
= Z 3 bad (0)+3mbadF(3m
keG;; ij
bdd
Uk bdd
B Z 3m bad F(3m, )
kGG”

z PulGu|F(3mbad)— pU|G1]|Szj

The combination of this inequality with (16) concludes the
proof of the lemma. O

bad
ij

)



C.3. Conclusion of Theorem 1

We prove the main theorem by induction, using Lemmas

1 and 2. For ¢ =0, the definition of s{;', Lemma 2 and the
definition of X\ imply that for all ij € E:

0) ZkEthdijk N ZkEthdijk >pv ‘sz| 5
Y [Nyl — Nyl T 3 |NG =g

Ba-ns,

We further note by using again the above definitions and the
fact that for all ¢j € F 0 <d;;, <1 that for ij € E,,

ZkEBq,j diji, < ZkeBu 1 1

o0 _ ke ik <A<
“ | Nij] INizl = [Nyl T T 26

Therefore, the theorem is proved when ¢ =0.

Next, we assume that the theorem holds for iterations
0,1,---,t and show that it also holds for iteration t+1. Applying

the definition of s(?+1) the positivity of the terms in the sum,

the induction assumption 5 B > maXjep, 5]), Lemma 2 and

the definition of A\, we obtain for any ¢j € Eb

—Br(sy) +55)
S _ Dken, € dijk
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Note that ze~** < -L for any e >0 and = > 0. In particular,
for a=p;(1-A\)p,/3e and =5} +57,,

e Prlsi i) (I=Npe/3e (gn 4g% ) < (23)

<3
Be(1=A)po

Applying the definition of 3§§+1), the fact that d;;;, = 0 for
any ij € B, and k € G;;, Lemma 1, the induction assumption

(;) > 3’2)1’ vs*. for ij € Ej, (for the numerator) and the

positivity of the relevant terms (for the denominator), the

induction assumption s ) <1 /(2B;) for all ij € E,, (23) and

the definition of A, we obtain for all 7j € E,
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We note that the assumption A <1+ @ —/3em (24 3em) jg

Po Po
equivalent with @ 66”)”‘ <1. Therefore by taking ;1 =1/
with 1 <7 < % we guarantee that for any ’L] e FE,,
t+1 +1
Ej )_ T , that is, max;jc g, S ( )S 2[3:“ 2,607 This

implication and (22) conclude the proof of the theorem.

D. Discussion of a Possible Theoretical Extension

Although our current analysis assumes no noise on the set of
good edges, one can relax this assumption. Indeed, one can as-
sume sufficiently small noise on good edges so that for all cycles
ijk and a sufficiently small positive constant 0: |d; ;. —d;jx| <9,
where d;i; and d;;;. are respectively the cycle inconsistencies
with and without noise on good edges. Using a basic pertur-
bation analysis, similarly as in the proof of Theorem 1, with
a carefully chosen set of the reweighting parameters /3;, one can
prove approximate separation of good and bad edges. In partic-
ular, the maximum value of the estimated s;; on good edges is
proportional to J. Removing the bad edges (with estimated s;;
larger than this threshold), one can then approximately solve the
PPS problem with a subsequent spectral solver. An approximate
recovery theorem for the absolute partial permutations using
the filtered edges can be established using spectral graph theory.



