
Supplemental Material
A. Additional Experiments on the EPFL dataset

We test MatchFAME on the 6 EPFL datasets following
the experimental setup of [13]. Each dataset includes 8 to 30
images, unlike the large number of images in the Photo Tourism
datasets. Given each dataset, we generate and refine the initial
keypoint matches with the same procedure introduced in [13].
We follow their convention and estimate the universe size with
m̂=2dM/ne. We implement MatchFAME with its default pa-
rameters, though with two changes described below. Indeed, the
EPFL dataset contains a lot of noisy edges and thus the weights
produced by PPM within the original MatchFAME algorithm
are often small. Furthermore, note that Proj in (9) is not scale
invariant and that the resulting small weights may lead to overly
sparse refined matches. Therefore, we slightly changed the
implementation of MatchFAME to overcome this issue. First,
in order to obtain a dense initialization of partial permutations
using MST, instead of assigning 1 to a random element for
each zero column, we assign 1 to a random element for each
zero row. Since the number of rows is larger than the number
of columns, this modification results in a denser initialization
of [P (0)

j ]j∈[n] than that of the original MatchFAME. Second,
to make sure that the final output is also sufficiently dense, we
drop the step of the weights’ normalization within the PPM
iterations, which is described below (9) (this will increase the
overall scale of the edge weights and thus the projected matrix
is expected to be denser). We remark that these two changes
help alleviate the over-sparseness of the final output and ends
up with a higher ratio between the number of refined matches
and the number of initial matches, which we denote by #M .

In addition to this version of MatchFAME, we also test
Spectral, MatchEIG and MatchALS with the same setting
as [13]. Note that the ’ground truth’ is obtained by estimating
the projection distance of key points on the epipolar line instead
of labeling by hand. Therefore the recall score is not a good
benchmark on real data. We thus only report the resulting
precision, number of remaining edges and runtime in Table 4.

MatchFAME achieves the highest precision of all methods
in all datasets. Observing #M , we note that MatchFAME
has around 20% fewer matches remaining compared to all
algorithms, but as long as there are enough matches for
each edge, one can reliably compute relative rotations and
translations for SfM tasks. We believe removing around 20%
more matches is not an essential drawback. Furthermore,
MatchFAME is faster than the other methods. In conclusion,
MatchFAME can achieve a reasonable estimate of matches
within a significant short amount of time.

B. Clarifications
We clarify some definitions and expand on various claims

mentioned in the paper.

B.1. More on Cycle Consistency and Inconsistency

We referred to a cycle ijk as consistent wheneverXijXjk≤
Xik, XjkXki≤Xji and XkiXij≤Xkj. Note that XijXjk

is a binary matrix with ones whenever there are paths of lengths
2 between keypoints of images i and k and Xik is binary matrix
with ones whenever there are paths of lengths 1 (single edges)
between keypoints of image i and k. That is, XijXjk≤Xik

means that if keypoints ti ∈ [mi] and tk ∈ [mk] (in images i
and k, respectively) are both matched to a keypoint tj in image
j, then they are matched to each other. Therefore, any cycle
ijk with corresponding partial permutations Xij, Xjk, Xki

is consistent if and only if for any ti ∈ [mi], tj ∈ [mj] and
tk∈ [mk]: If two of the events Xij(ti,tj)=1, Xjk(tj,tk)=1,
Xki(tk,ti)=1 hold true, then the third one holds true as well.

This equivalent reformulation of cycle consistency
further clarifies the definition of dijk in (4). For fixed
Xij,Xjk,Xki∈Pl1,l2 , the denominator of the fraction in (4)
can be viewed as the number of combinations of three keypoints
a, b, c, such that at least two of the three events

Xij(a,b)=1,Xjk(b,c)=1, and Xki(c,a)=1 (10)

hold. Furthermore, the numerator of the fraction in (4) can be
viewed as the total number combinations of three keypoints
a, b, c, such that all the three events in (10) hold. Thus, the
fraction in (4) indeed measures the level of cycle consistency,
and consequently dijk measures the cycle inconsistency.

We remark that an inequality of two full permutation matrices
must be an equality. Therefore, for permutation synchroniza-
tion the above definition of cycle consistency is equivalent with
XijXjk=Xik (or equivalently, XjkXki=Xji or XkiXij=
Xkj or XkiXijXjk=I). That is, our definition of cycle con-
sistency is a direct extension of the one in group synchronization.

B.2. Cycle-verifiability Helps in Verifying Matches
in Cycles

We further interpret the cycle-verifiable condition and clar-
ify its name. We claim that if ijk is a good cycle (w.r.t. ij)
ensured by Definition 1 with a∈ Ii and c∈ Ij, then one can
verify whether a and c correctly match (i.e., h(a)=h(c)) using
b∈Ik. Indeed, since b matches a and k∈Gij, h(a)=h(b). If
b and cmatch then since k∈Gij h(b)=h(c) and consequently
h(a) = h(c). Assume on the other hand that b and c do not
match. If bmatches another point c′, then since k∈Gij, h(b)=
h(c′) 6=h(c). If b does not match any point in Uj, then since
k∈Gij, h(b) 6∈h(Uj) (otherwise there exists c′∈Uj such that
h(c′)=h(b) and since k∈Gij there has to be a match between
b and c′.). Since h(c)∈h(Uj) and h(b) 6∈h(Uj), h(b) 6=h(c).

C. Proof of Theorem 1

The proof establishes two lemmas, Lemmas 1 and 2, and
then uses them to conclude Theorem 1. It is rather technical



Algorithms
Initial MatchEig Spectral MatchALS PPM MatchFAME

Dataset (ours)

n m̂ PR PR #M T PR #M T PR #M T PR #M T PR #M T

Herz-Jesu-P25 25 517 89.6 94.2 73 72 92.2 81 125 93.3 83 9199 92.5 88 125 95.0 78 15

Herz-Jesu-P8 8 386 94.3 95.2 97 1 95.3 92 4 95.9 76 155 95.4 94 5 95.9 83 3

Castle-P30 30 445 71.8 84.7 55 64 80.6 72 99 80.4 76 13583 80.2 77 112 87.9 61 15

Castle-P19 19 314 70.1 79.7 57 23 76.3 76 21 77.0 74 1263 77.5 76 33 83.0 56 4

Entry-P10 10 432 75.4 79.9 78 11 82.1 78 30 77.3 77 322 80.7 83 34 83.1 69 5

Fountain-P11 11 374 94.2 95.4 81 8 95.4 93 14 95.7 82 333 95.6 94 18 96.7 81 5

Table 4. Performance on the EPFL datasets. n is the number of cameras; m̂, the approximated m, is twice the averaged mi over i∈ [n]; PR refers
to the precision |Ê∩Eg|/|Ê|, which is expressed in percentage (the higher the better); #M is the ratio (expressed in percentage) between the
number of refined matches and the number of initial matches; T is runtime in seconds.

and not so easy to motivate. In order to provide more intuition,
we added some clarifying figures.

Convention for figures: In all of these figures, we designate
by green lines good keypoint matches, by red lines bad keypoint
matches and by dashed orange lines missing keypoint matches.
All of these occur between keypoints of two different images.
On the other hand, matches between keypoints in an image
and universal 3D keypoints are designated by black dotted lines
(these correspond to our formal h function). We further color
the universal 3D keypoints (in Uij), which represent elements
of Ugood

ij , by green. We also color the universal 3D keypoints,
which represent elements ofUbad

ij , in red. In Figure 5, we slightly
extend the latter convention and explain it in its caption.

Terminology Review: Recall that n∆ =Tr(XijXjkXki),
m is the number of all 3D keypoints,mij is the number of 3D
keypoints that correspond to the 2D keypoints of images i or j
and among these, mbad

ij is the number of keypoints that match
wrong keypoints in the other image, or match no keypoint if a
ground-truth match exists. We also denote the number of the
rest of points bymgood

ij (that is,mgood
ij =mij−mbad

ij ) and recall
that these keypoints match the ground-truth keypoints or, do not
match any keypoint, if no ground-truth matches exist.

C.1. Upper Bound for the Cycle Inconsistency of
Good Edges

This section includes the proof of the following lemma:
Lemma 1. For any ij∈Eg, dijk≤m(s∗ik+s

∗
jk).

We remark that in the case of group synchronization,
in particular, PS, one can easily show that for any ij ∈ E,
|dijk−s∗ij|≤ s∗ik+s∗jk (see Lemma 1 of [11]). Consequently
for ij ∈Eg, dijk ≤ s∗ik+s∗jk. However, in PPS, without the
full group structure with a bi-invariant metric, it is harder to
prove the weaker bound of Lemma 1. The proof below involves
various discrete combinatorial arguments.

Proof. Assume first that n∆ = 0 and note that (4) implies
dijk = 1. Since dijk 6= 0 and ij ∈Eg, s∗ik and s∗jk cannot be

both zero (otherwise this and the fact that ij ∈Eg imply that
ijk is cycle-consistent and thus dijk = 0). Without loss of
generality, assume s∗jk>0. We note that

s∗jk=
mbad
jk

mjk
≥ 1

m
,

which implies the desired bound:

dijk=1=m· 1
m
≤ms∗jk≤m(s∗ik+s

∗
jk).

Assume next that n∆>0, or equivalently,

n∆≥1. (11)

The next arguments require additional definitions and ob-
servations. We recall that any element of Ii represents a 2D
keypoint in image i. This keypoint is associated with the index
vector (i,j), where j=1,...,mi and we can thus view Ii as the
set ofmi index vectors. For cycle ijk, (a,b,c)∈Ii×Ij×Ik is an
(i,jk) tuple if there is a match between a and both b and c (the
match can be either good or bad). If (a,b,c) is an (i,jk) tuple
and there is no match between b and c, then we refer to (a,b,c)
as a bad (i,jk) tuple, otherwise, it is a good (i,jk) tuple. For ex-
ample, in Figure 5, there are three (i,jk) tuples: (pi,2,pj,1,pk,1),
(pi,3,pj,3,pk,2) and (pi,4,pj,2,pk,3). We note that (pi,2,pj,1,pk,1)
and (pi,4,pj,2,pk,3) are bad (i,jk) tuples and (pi,3,pj,3,pk,2) is
a good (i,jk) tuple. For cycle ijk, we denote by Ai,jk the set
of (i,jk) tuples in Ii×Ij×Ik, by Abad

i,jk the set of bad (i,jk)

tuples and byAgood
i,jk the set of good (i,jk) tuples.

Recall that for a cycle ijk, ni= nnz(XkiXij), nj and nk
are analogously defined, and n∆ = Tr(XijXjkXki). Also
recall the notation pi,j for elements of Ii. We note that (a,b,c)
is an (i,jk) tuple if and only if (iff) a=pi,u, b=pj,v, c=pk,w
and both Xki(w,u) = 1 and Xij(u,v) = 1 (so pi,u matches
to both pj,v and pk,w). We further note that the latter two
requirements are equivalent with XkiXij(w,v) = 1. Indeed,



since XkiXij(w, v) =
∑
u′∈[mi]

Xki(w, u
′)Xij(u

′, v) and
XkiXij is a partial permutation, then XkiXij(w,v) = 1 iff
Xki(w,u)=Xij(u,v)=1 for some u∈ [mi]. Therefore

|Ai,jk|=ni.

By the same way we note that

|Aj,ki|=nj and |Ak,ij|=nk.

Similarly, note that (a, b, c) is a good (i, jk) tuple iff
a=pi,u, b=pj,v, c=pk,w, Xki(w,u)=1, Xij(u,v)=1 and
Xjk(v,w) = 1. The latter three requirements are equivalent
with XijXjkXki(u,u)=1. Indeed, the following equation

XijXjkXki(u,u)=∑
v′∈[mj],w′∈[mk]

Xij(u,v
′)Xjk(v

′,w′)Xki(w
′,u)

and the fact that XijXjkXki is a partial permutation imply
this equivalence. Therefore,

|Agood
i,jk |=n∆ and |Abad

i,jk|=ni−n∆.

Similarly, we conclude that

|Abad
j,ki|=nj−n∆ and |Abad

k,ij|=nk−n∆.

Using these observations and (4), one can rewrite dijk as follows

dijk=
|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|+3n∆

. (12)

Let us assume that (a,b,c)∈Abad
i,jk and show that

h(c)∈Ubad
ik ∪Ubad

jk . (13)

The assumption ij ∈ Eg implies that there is a good match
between a and b.

We claim that if there is also a good match between a
and c, then h(b) = h(a) = h(c) ∈ Uij ∩Uik ∩Ujk. Indeed,
assume a = pi,u, b = pj,v, c = pk,w and h(a) = l, i.e.,
P ∗i (u, l) = 1. Because there exists a good match between
a and b, X∗ij(u, v) = Xij(u, v) = 1. Since X∗ij(u, v) =

P ∗i P
∗T
j (u,v)=

∑
d∈[m]P

∗
i (u,d)P

∗
j (v,d) and P ∗j is a partial

permutation, P ∗j (v,l) = 1 and thus h(b) = l. Similarly, since
there exists a good match between a and c, P ∗k (w,l)=1 and
h(c)=l. Therefore h(a)=h(b)=h(c)=l∈Uij∩Uik∩Ujk.

Since (a,b,c)∈Abad
i,jk, there is no match between b and c and

thus h(c)∈Ubad
jk , which implies (13).

If on the other hand, there is a bad match between a and c,
then h(c)∈Ubad

ik , which also implies (13).
In view of (13), the function f(a, b, c) = h(c) maps

Abad
i,jk to Ubad

ik ∪Ubad
jk . We note that this function is injective.

Indeed, since Xik and Xjk are partial permutations, for any

Figure 5. A demonstration for clarifying the definition of (i,jk) tuples,
good (i,jk) tuples, bad (i,jk) tuples as well as the function f . The
actual use of the figure is clarified when it is referred to. Unlike other
figures (that focus on points in Uij and not in Uij∪Ujk∪Uki), the
red dots correspond to keypoints in Ubad

ij ∪Ubad
jk ∪Ubad

ik and the green
dots correspond to the rest of keypoints in Uij∪Ujk∪Uki. We note
that Ubad

ik ={5}, Ubad
jk ={2} and Ubad

ij =∅.

h(c)∈Ubad
ik ∪Ubad

jk , where c∈Ik, if there are a and b in Ii and
Ij, respectively, such that there are matches between them and
c and f(a,b,c)=h(c), then a and b are unique. Figure 5 demon-
strates f and its proven injectivity in a special case. In this case,
Abad
i,jk = {(pi,4,pj,2,pk,3),(pi,2,pj,1,pk,1)}, f(pi,4,pj,2,pk,3) =

h(pk,3)=5∈Ubad
ik and f(pi,2,pj,1,pk,1)=h(pk,1)=2∈Ubad

jk .
By the cardinality property of an injective map,

|Abad
i,jk|≤|Ubad

ik ∪Ubad
jk |≤|Ubad

ik |+|Ubad
jk |=mbad

ik +mbad
jk .

Similarly, the same bound holds for |Abad
j,ki| and |Abad

k,ij| and
consequently,

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|≤3(mbad

ik +mbad
jk ). (14)

Therefore the combination of (11) and (14) with the definition
of s∗ik as well as s∗jk (i.e., noting that s∗ik = mbad

ik /mik =

1−mgood
ik /mik and s∗jk=m

bad
jk /mjk=1−mgood

jk /mjk) yields

dijk=
|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|+3n∆

≤
3(mbad

ik +mbad
jk )

3(mbad
ik +mbad

jk )+3

≤ 3mbad
ik

3mbad
ik +3

+
3mbad

jk

3mbad
jk +3

=
3s∗ik

3s∗ik+
3
mik

+
3s∗jk

3s∗jk+
3
mjk

≤miks
∗
ik+mjks

∗
jk

≤m(s∗ik+s
∗
jk).



C.2. Lower Bound for the Averaged Cycle Incon-
sistency Among Good Cycles

This section includes the proof of the following lemma:

Lemma 2. IfG=(V,E) is pv-cycle verifiable, then

1

3
pvs
∗
ij≤

1

|Gij|
∑
k∈Gij

dijk ∀ij∈E. (15)

Proof. We assume several cases.
Case I: ij∈Eg. The left hand side of (15) is zero and its right
hand side (RHS) is also zero since for any ij∈Eg and k∈Gij,
dijk=0.
Case II: ij∈Eb and k∈Gij. Denote

Nbad
ijk= |Abad

i,jk|+|Abad
j,ki|+|Abad

k,ij|,

and note that in view of (12)

∑
k∈Gij

dijk=
∑
k∈Gij

Nbad
ijk

Nbad
ijk+3n∆

. (16)

We thus need to lower bound the RHS of (16) in order to
conclude (15).

We first derive the boundn∆≤mgood
ij . Figure 6 demonstrates

the definitions below and the desired bound in a very special
case. Let Dijk denote the set of indices of diagonal entries of
XijXjkXki that equal 1. Note that |Dijk|= n∆ due to the
fact that n∆=Tr(XijXjkXki). Also, since XijXjkXki is of
size mi×mi, Dijk ⊆ [mi]. We can thus assign for d∈Dijk,
pi,d = a ∈ Ii. Because XijXjkXki(d,d) = 1, there exists
1≤u≤mj and 1≤v≤mk such that Xij(d,u)=Xjk(u,v)=
Xki(v,d) = 1. Therefore, we note that for b := pj,u ∈ Ij and
c := pk,v ∈ Ik, there exist matches between a and b, b and c,
as well as c and a. Since k ∈Gij, jk ∈Eg and ki∈Eg and
thus h(b) = h(c) = h(a) (see the same argument in the para-
graph below (13), where it is enough to just assume that either
jk∈Eg or ki∈Eg); we denote the latter common value by l.
Therefore P ∗i (a,l) =P ∗j (b,l) =Xij(a,b) = 1. By definition
of Ugood

ij , l∈Ugood
ij . Let fijk be a function from Dijk to Ugood

ij

such that fijk(d)= l. We note that it is injective since for any
d 6=d′∈Dijk, pi,d 6=pi,d′ , therefore h(pi,d) 6=h(pi,d′). By the
cardinality property of an injective map, n∆≤|Ugood

ij |=m
good
ij .

Next, We prove an upper bound of Nbad
ijk . We assume

without loss of generality that (a,b,c)∈Abad
i,jk. Since ik,jk∈Eg,

the matches from a to c and from b to c are correct. Therefore,
the match from a to b is wrong and h(a)∈Ubad

ij . Denote by
gi : A

bad
i,jk → Ubad

ij the function which maps (a,b,c) ∈ Abad
i,jk

to h(a)∈Ubad
ij . Figure 7 illustrates gi in a special case. This

function is injective since for any x ∈ Ubad
ij , g−1

i (x) contains
at most one element (a,b,c)∈Abad

i,jk. Indeed, if gi(a,b,c)=x,
then there must exist a∈Ii such that h(a)=x, c in Ik such that
there is a match between a and c, and b in Ij such that there is

Figure 6. An illustration of n∆, Dijk, fijk and mgood
ij . Note that n∆ is

equal to the number of green triangles with vertices in Ii,Ij,Ik. Since
there is only one such triangle, n∆=1. This triangle (with keypoints
pi,4,pj,2,pk,3) is associated with the keypoint in Ii with index 4 and
thus Dijk={4}. Since it is also associated with the universal keypoint
with index 4, the function fijk maps 4 to 4∈Ugood

ij . At last, note that
mgood

ij = |Ugood
ij |=2.

Figure 7. An illustration of gi, gij,k and the injectivity of both functions
in a very special case. In this example, the only element of Abad

i,jk is
(pi,2,pj,1,pk,1). Since we defined gi(a,b,c) = h(a), we obtain that
gi(pi,2,pj,1,pk,1) = h(pi,2) = 2 ∈ Ubad

ij . Note that Ubad
ij ∩h(Ik) =

{2,3}. Recall that the function gij,k maps x∈Ubad
ij ∩h(Ik) to the bad

(j,ki) tuple or bad (k,ij) tuple that involves c∈Ik with h(c)=x. In
this example, the function gij,k maps 2∈Uij to the bad (i,jk) tuple
(pi,2,pj,1,pk,1). It maps 3∈Uij to the bad (k,ij) tuple (pk,2,pi,3,pj,3).

a match between a and b (and no match between b and c). Note
that there is a match between at most one keypoint in Ik and a
and thus there is at most one such c. Similarly, there is at most
one such b. Since there is at most one keypoint in Ii which
corresponds to the 3D keypoint x, there is at most one such a.
The injectivity of gi implies |Abad

i,jk|≤|Ubad
ij |=mbad

ij . Similarly,
|Abad
j,ki|≤mbad

ij and |Abad
k,ij|≤mbad

ij . Thus, for any k∈Gij

0≤Nbad
ijk≤3mbad

ij . (17)

Next, we establish a lower bound of Nbad
ijk . For this

purpose, we construct an injective map gij,k from Ubad
ij ∩h(Ik)

to Abad
i,jk ∪ Abad

j,ki ∪ Abad
k,ij. It will allow us to lower bound

Nbad
ijk = |Abad

i,jk| + |Abad
j,ki| + |Abad

k,ij| by the cardinality of



Ubad
ij ∩h(Ik). Note that Ubad

ij ⊆Uij=h(Ii)∪h(Ij). Therefore
any element of Ubad

ij ∩h(Ik) is either in h(Ii) or h(Ij)\h(Ii).
In the case where x∈Ubad

ij ∩h(Ik) and x∈h(Ii), we will
show that there exist either (a,b,c)∈Abad

i,jk or (c,a,b)∈Abad
k,ij

such that h(c)=x. In the case where x∈Ubad
ij ∩h(Ik) and x∈

h(Ij)\h(Ii), then one can similarly show that there exists either
(b,c,a)∈Abad

j,ki or (c,a,b)∈Abad
k,ij such that h(c)=x. These argu-

ments induce a map gij,k from Ubad
ij ∩h(Ik) to Abad

i,jk∪Abad
j,ki∪

Abad
k,ij which mapsx to its corresponding bad tuple. Sinceh(c)=

x, gij,k is injective. Figure 7 illustrates gij,k in a special case.
We thus assume that x∈Ubad

ij ∩h(Ik) and x∈h(Ii). Note
that the latter requirement implies the existence of a∈Ii such
that h(a) = x. Since x ∈ h(Ik), there exists c ∈ Ik such that
h(c)=x and since ik∈Eg there is a good match between a and
c. Note that there cannot be a good match between a and any
b∈Ij, otherwise x 6∈Ubad

ij . Therefore, there are two cases to con-
sider. In the first case there exists b∈Ij such that there is a wrong
match between a and b. This implies that h(b) 6=h(a) and since
we showed above that h(a) = h(c), we conclude that h(b) 6=
h(c). The latter observation and the fact that jk∈Eg imply that
there is no match between b and c and thus (a,b,c) is a bad (i,jk)
tuple, that is, (a,b,c)∈Abad

i,jk. In the second case, there exists
b∈Ij such that h(b)=h(a), but there is no match between b and
a (the previous case considered the scenario where there exists
b∈Ij such that a and bmatch; furthermore, ifh(a) 6=h(b) for all
b∈Ij, then x∈Ugood

ij ). Since h(a)=h(c)=h(b) and jk∈Eg,
there is a match between b and c. Therefore, (c,a,b) is a bad
(k,ij) tuple, that is, (c,a,b)∈Abad

k,ij. Following the above ideas,
this concludes the injectivity of gij,k. This injectivity implies∑

x∈Ubad
ij

1{x∈h(Ik)}= |Ubad
ij ∩h(Ik)|≤|Abad

i,jk∪Abad
j,ki∪Abad

k,ij|

≤|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|=Nbad

ijk. (18)

In order to apply (18) we lower bound a certain sum of
1{x∈h(Ik)}. Our argument assumes that x∈Ubad

ij . Since x∈Uij,
we conclude WLOG that x∈h(Ii). Therefore there exists a∈Ii
such that h(a)=x. By the pv-cycle verifiability condition, a
is verifiable w.r.t. ij in at least pv|Gij| good cycles. For any
such cycle ijk that a is verifiable in, let b ∈ Ik match a (for
convenience, we demonstrate x, a and b in Figure 8). Since
ik∈Eg, the match between a and b is a good match and thus
x=h(a)=h(b). Since b∈Ik, h(b)∈h(Ik) and thus x∈h(Ik).
That is, we have proved that if k ∈Gij and a is verifiable in
ijk, then x∈h(Ik). We have at least pv|Gij| such k’s and thus∑

k∈Gij

1{x∈h(Ik)}≥pv|Gij| for any x∈Uij. (19)

We combine the above two inequalities as follows. Summing
both sides of (18) over k ∈ Gij, exchanging the order of

Figure 8. Visual demonstration of keypoints involved in the argument
for bounding

∑
k∈Gij1{x∈h(Ik)}.

summation and applying (19) result in

pv|Gij|mbad
ij =pv|Gij||Ubad

ij |≤
∑
k∈Gij

Nbad
ijk. (20)

Using the above bound we will bound from below

∑
k∈Gij

Nbad
ijk

Nbad
ijk+3mgood

ij

and we will then use (16) to conclude the desired inequality.
We denote

F(x)=
x

x+γ
where γ=3mgood

ij . (21)

Note that F(0)=0,

F(3mbad
ij )=

3mbad
ij

3mbad
ij +3mgood

ij

=s∗ij

and F(x) is concave. Applying the definition of F , Jensen’s
inequality, (20) and (21) yield

∑
k∈Gij

Nbad
ijk

Nbad
ijk+3mgood

ij

=
∑
k∈Gij

F(Nbad
ijk)

≥
∑
k∈Gij

((1−
Nbad
ijk

3mbad
ij

)F(0)+
Nbad
ijk

3mbad
ij

F(3mbad
ij ))

=
∑
k∈Gij

Nbad
ijk

3mbad
ij

F(3mbad
ij )

≥ 1

3
pv|Gij|F(3mbad

ij )=
1

3
pv|Gij|s∗ij.

The combination of this inequality with (16) concludes the
proof of the lemma.



C.3. Conclusion of Theorem 1

We prove the main theorem by induction, using Lemmas
1 and 2. For t= 0, the definition of s(0)

ij , Lemma 2 and the
definition of λ imply that for all ij∈E:

s
(0)
ij =

∑
k∈Nijdijk

|Nij|
≥
∑
k∈Gijdijk

|Nij|
≥ pv

3

|Gij|
|Nij|

s∗ij≥
pv
3
(1−λ)s∗ij.

We further note by using again the above definitions and the
fact that for all ij∈E 0≤dijk≤1 that for ij∈Eg,

s
(0)
ij =

∑
k∈Nijdijk

|Nij|
=

∑
k∈Bijdijk

|Nij|
≤
∑
k∈Bij1

|Nij|
≤λ≤ 1

2β0
.

Therefore, the theorem is proved when t=0.

Next, we assume that the theorem holds for iterations
0,1,···,t and show that it also holds for iteration t+1. Applying
the definition of s(t+1)

ij , the positivity of the terms in the sum,

the induction assumption 1
2βt
≥maxij∈Egs

(t)
ij , Lemma 2 and

the definition of λ, we obtain for any ij∈Eb

s
(t+1)
ij =

∑
k∈Nije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≥
∑
k∈Gije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≥
∑
k∈Gije

−1dijk

|Nij|
(22)

≥ pv
3e

|Gij|
|Nij|

s∗ij

≥ (1−λ)pv
3e

s∗ij.

Note that xe−αx≤ 1
αe for any α> 0 and x≥ 0. In particular,

for α=βt(1−λ)pv/3e and x=s∗ik+s
∗
jk,

e−βt(s
∗
ik+s∗jk)(1−λ)pv/3e(s∗ik+s

∗
jk)≤

3

βt(1−λ)pv
. (23)

Applying the definition of s(t+1)
ij , the fact that dijk = 0 for

any ij∈Eg and k∈Gij, Lemma 1, the induction assumption
s
(t)
ij ≥

(1−λ)pv
3e s∗ij for ij ∈ Eb (for the numerator) and the

positivity of the relevant terms (for the denominator), the
induction assumption s(t)

ij ≤ 1/(2βt) for all ij ∈Eg, (23) and

the definition of λ, we obtain for all ij∈Eg

s
(t+1)
ij =

∑
k∈Nije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

=

∑
k∈Bije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≤
∑
k∈Bije

−βt(s(t)ik +s
(t)
jk )m(s∗ik+s

∗
jk)∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≤
∑
k∈Bije

−βt(s∗ik+s∗jk)
(1−λ)pv

3e m(s∗ik+s
∗
jk)∑

k∈Gije
−βt(s(t)ik +s

(t)
jk )

≤
m
∑
k∈Bije

−βt(s∗ik+s∗jk)
(1−λ)pv

3e (s∗ik+s
∗
jk)

|Gij|e−1

≤
m
∑
k∈Bij

3
βt(1−λ)pv

|Gij|e−1

=
3m|Bij|
|Gij|e−1

· 1

βt(1−λ)pv

≤ 6emλ

(1−λ)2pv
· 1
2βt

.

We note that the assumption λ<1+ 3em
pv
−
√

3em
pv

(2+ 3em
pv

) is

equivalent with 6emλ
(1−λ)2pv

<1. Therefore by taking βt+1=rβt

with 1 < r < (1−λ)2pv
6emλ , we guarantee that for any ij ∈ Eg,

s
(t+1)
ij ≤ 1

2βt+1
, that is, maxij∈Egs

(t+1)
ij ≤ 1

2βt+1
= 1

2β0rt
. This

implication and (22) conclude the proof of the theorem.

D. Discussion of a Possible Theoretical Extension
Although our current analysis assumes no noise on the set of

good edges, one can relax this assumption. Indeed, one can as-
sume sufficiently small noise on good edges so that for all cycles
ijk and a sufficiently small positive constant δ: |d′ijk−dijk|<δ,
where dijk and d′ijk are respectively the cycle inconsistencies
with and without noise on good edges. Using a basic pertur-
bation analysis, similarly as in the proof of Theorem 1, with
a carefully chosen set of the reweighting parameters βt, one can
prove approximate separation of good and bad edges. In partic-
ular, the maximum value of the estimated sij on good edges is
proportional to δ. Removing the bad edges (with estimated sij
larger than this threshold), one can then approximately solve the
PPS problem with a subsequent spectral solver. An approximate
recovery theorem for the absolute partial permutations using
the filtered edges can be established using spectral graph theory.


