
Federated Learning with Position-Aware Neurons - Supplementary

Xin-Chun Li1, Yi-Chu Xu1, Shaoming Song2, Bingshuai Li2, Yinchuan Li2,
Yunfeng Shao2, De-Chuan Zhan1

1State Key Laboratory for Novel Software Technology, Nanjing University
2Huawei Noah’s Ark Lab

{lixc, xuyc}@lamda.nju.edu.cn, zhandc@nju.edu.cn

{shaoming.song, libingshuai, liyinchuan, shaoyunfeng}@huawei.com

1. Dataset Details
The utilized datasets include Mnist [14], FeM-

nist [2], SVHN [19], GTSRB [23], Cifar10/100 [13], and
Cinic10 [5]. We detail these datasets as follows.

• Mnist [14] is a digit recognition dataset that contains
10 digits to classify. The raw set contains 60,000 sam-
ples for training and 10,000 samples for evaluation.
The image size is 28× 28.

• SVHN [19] is the Street View House Number dataset
which contains 10 numbers to classify. The raw set
contains 73,257 samples for training and 26,032 sam-
ples for evaluation. The image size is 32× 32.

• GTSRB [23] is the German Traffic Recognition
Benchmark with 43 traffic signs. The raw set con-
tains 39,209 samples for training and 12,630 samples
for evaluation. We resize the images to 32× 32.

• Cifar10 and Cifar100 [13] are subsets of the Tiny Im-
ages dataset and respectively have 10/100 classes to
classify. They consist of 50,000 training images and
10,000 test images. The image size is 32× 32.

• Cinic10 [5] is a combination of Cifar10 and Ima-
geNet [6], which contains 10 classes. It contains
90,000 samples for training, validation, and test, re-
spectively. We do not use the validation set. The image
size is 32× 32.

• FeMnist [2] is built by partitioning the data in
Extended MNIST [4] based on the writer of the
digit/character. There are 62 digits and characters in
all. The total number of training samples is 805,263.
There are 3,550 users, and each user owns 226.8 sam-
ples on average. We only use 10% users (i.e., 355
users). For each user, we take 20% of the samples to
construct the global test set. We resize the images to
28× 28.

FC (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

𝑊𝑊 ∈ 𝑅𝑅𝑑𝑑′×𝑑𝑑 , 𝑏𝑏 ∈ 𝑅𝑅𝑑𝑑′ , 𝑒𝑒 ∈ 𝑅𝑅𝑑𝑑′
𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶′×𝐶𝐶×𝑘𝑘𝑤𝑤×𝑘𝑘ℎ ,
𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶′×𝐶𝐶×𝑘𝑘𝑤𝑤×𝑘𝑘ℎ , 𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

𝑊𝑊𝑠𝑠𝑠𝑠 ∈ 𝑅𝑅𝐶𝐶
′×𝐶𝐶×1×1, 𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

ReLU(𝑊𝑊𝑊𝑊 + 𝑏𝑏 + 𝑒𝑒) ReLU(Conv(𝑥𝑥;𝑊𝑊, 𝑏𝑏) + 𝑒𝑒) ReLU(Conv(𝑥𝑥;𝑊𝑊, 𝑏𝑏) + 𝑒𝑒 +
Conv(𝑥𝑥;𝑊𝑊𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑠𝑠𝑠𝑠) + 𝑒𝑒𝑠𝑠𝑠𝑠)

ReLU((𝑊𝑊𝑊𝑊 + 𝑏𝑏) ∘ 𝑒𝑒) ReLU(Conv(𝑥𝑥;𝑊𝑊, 𝑏𝑏) ∘ 𝑒𝑒) ReLU(Conv(𝑥𝑥;𝑊𝑊, 𝑏𝑏) ∘ 𝑒𝑒 +
Conv(𝑥𝑥;𝑊𝑊𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑠𝑠𝑠𝑠) ∘ 𝑒𝑒𝑠𝑠𝑠𝑠)

Conv (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

Conv (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

ConvSC (𝑊𝑊𝑠𝑠𝑠𝑠,𝑏𝑏𝑠𝑠𝑠𝑠 )

PE (𝑒𝑒𝑠𝑠𝑠𝑠)

𝑃𝑃𝑃𝑃𝑁𝑁+

𝑃𝑃𝑃𝑃𝑁𝑁∘

MLP VGG ResNet

Figure 1. Network architectures with PANs. “PE” denotes posi-
tion encoding; “SC” denotes shortcut. For ResNet, we only show
one convolution layer in the basic block and omit the BatchNorm
layers for simplification.

For centralized training, we correspondingly use the
training set and test set for the first six datasets. For FeM-
nist, we centralize users’ training samples as the training
set. For decentralized training (i.e., FL), we split the train-
ing set of the first six datasets according to Dirichlet distri-
butions as done in previous FL works [9, 17, 24]. Specif-
ically, we split the training set onto K clients and each
client’s label distribution is generated from Dirichlet(α).
While for FeMnist, we directly take the 355 users as clients.
Some of these datasets are utilized in previous FL works.
For example, Cifar10/Cifar100/Cinic10 are recommended
by FedML [7], and FeMnist is recommended by LEAF [2].

2. Network Details
We utilize MLP, VGG [21], ResNet [8] in this paper. We

detail their architectures as follows:

• MLP denotes a multiple layer perceptron with four
layers containing input and output layers. For Mnist
and FeMnist, the input size is 28×28 = 784. MLP has
the architecture: FC1(784, 1024), ReLU(), FC2(1024,

1



Algorithm 1 Shuffle Process

1: Input: parameters {Wl, bl}Ll=1; shuffle probability Psf
2: Generate-Permutation-Matrix: {Πl}L−1l=1 , Π{0,L} = I
3: for each layer l = 1, 2, . . . , L do
4: Wl ← ΠlWlΠ

T
l−1, bl ← Πlbl

5: end for
Generate-Permutation-Matrix

1: Input: number of neurons J ; shuffle probability Psf
2: Initialize: Π = IJ×J

3: for j = 1, 2, . . . , J do
4: sample i from Range(j + 1, J)
5: if p ∼ Uniform(0, 1) ≤ Psf then Swap(Πj ,Πi)
6: end for

Algorithm 2 Shuffle Process in FL

1: Input: shuffle probability Psf; expected shuffle times
Nsf; number of local epochs E; batch size B; number
of local samples {Nk}Kk=1

2: for each client k ∈ St do
3: Calculate the number of local update steps: rk =

E ∗Nk/B
4: for each local step in [rk] do
5: if p ∼ Uniform(0, 1) ≤ Nsf/rk run the Shuf-

fleProcess with shuffle probability Psf
6: end for
7: end for

1024), ReLU(), FC3(1024, 1024), ReLU(), FC4(1024,
C). C denotes the number of classes.

• VGG contains a series of networks with various lay-
ers. The paper of VGG [21] presents VGG11, VGG13,
VGG16, and VGG19. We follow their architectures
and report the configuration of VGG11 as an example:
64, M, 128, M, 256, 256, M, 512, 512, M, 512, 512, M.
“M” denotes the max-pooling layer. VGG11 contains
8 convolution blocks and three fully-connected layers
in [21]. However, we only use one fully-connected
layer for classification in this paper. VGG9 is com-
monly utilized in previous FL works [17, 24], whose
configuration is: 32, 64, M, 128, 128, M, 256, 256,
M. We keep all the fully-connected layers in VGG9
for a fair comparison with other works. The three
fully-connected layers in VGG9 are: FC(4096, 512),
ReLU(), FC(512, 512), ReLU(), FC(512, C). We
name the ith convolution layer in VGG as “Convi”.
We do not use BatchNorm [11] in VGG by default.

• ResNet introduces residual connections to plain neu-
ral networks. We take the Cifar versions used in the
paper [8], i.e., ResNet20 with the basic block. We
set the initial channel as 64 (i.e., the output channel

0.0 0.05 0.1 0.25 0.5 0.75

A

1

2

4

8

16

T

Shuffle Error

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A

0

10

20

30

S
hu

ffl
e

E
rr

or

PAN+

0

2

4

6

8

PAN◦

Figure 2. Left: shuffle error with various T andA (PAN◦). Right:
the difference between PAN+ and PAN◦ (T=1). (MLP)

0.0 0.05 0.1 0.25 0.5 0.75

A

1

2

4

8

16

T

Shuffle Error

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A

0.0

0.5

1.0

S
hu

ffl
e

E
rr

or

PAN+

0

2

4

6

×107

PAN◦

Figure 3. Left: shuffle error with various T andA (PAN◦). Right:
the difference between PAN+ and PAN◦ (T=1). (ResNet20)

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0.00

0.05

0.10

0.15

0.20

0.25

W
ei

gh
t

D
iv

er
ge

nc
e

Mnist MLP α=1.0

OFF (A=0.0)

ON (PAN◦ A=0.1)

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0.0

0.1

0.2

0.3

Mnist MLP α=0.1

OFF (A=0.0)

ON (PAN◦ A=0.1)

Figure 4. Weight divergence with PANs off/on. (E = 20, MLP on

Mnist.)

of the first convolution layer), and take nine continual
basic blocks with 64, 64, 64, 128, 128, 128, 256, 256,
256 channels, respectively. We add a fully-connected
layer for classification. We use BatchNorm [11] in
ResNet20 and add it before ReLU activation.

For these networks with PANs, we plot the demos in
Fig. 1. We add PE before the ReLU activation layer and
after the BatchNorm layer. We show the formulations of ad-
ditive PANs and multiplicative PANs in the table of Fig. 1.

3. Hyper-parameter Details
For both centralized training and decentralized training

(i.e., FL), we take a constant learning rate without schedul-
ing, although some works have pointed out decaying the
learning rate will help in FL [3]. We take SGD with mo-
mentum 0.9 as the optimizer by default if without more dec-
laration. For MLP and VGG networks, we set the learning



Conv1.W

Conv1.b

Conv2.W

Conv2.b

Conv3.W

Conv3.b

Conv4.W

Conv4.b

Conv5.W

Conv5.b

Conv6.W

Conv6.b

0.0

0.2

0.4

0.6

0.8

W
ei

gh
t

D
iv

er
ge

nc
e

Cifar10 VGG9 α=1.0

OFF (A=0.0)

ON (PAN◦ A=0.1)

Conv1.W

Conv1.b

Conv2.W

Conv2.b

Conv3.W

Conv3.b

Conv4.W

Conv4.b

Conv5.W

Conv5.b

Conv6.W

Conv6.b

0.0

0.5

1.0

1.5

Cifar10 VGG9 α=0.1

OFF (A=0.0)

ON (PAN◦ A=0.1)

Figure 5. Weight divergence with PANs off/on. (E = 5, VGG9 on

Cifar10.)

OFF (A=0.0) [0.062] ON (PAN◦ A=0.1) [0.312]

Figure 6. Optimal assignment matrix with PANs off/on, left vs.
right. (α = 1.0,E = 20, VGG9 Conv6 on Cifar10.)

rate as 0.05; for ResNet, we use 0.1. We respectively use a
warm start with 100 training steps and 10 training steps for
centralized training and decentralized training (during local
training). We use batch size 10 for FeMnist and 64 for other
datasets.

We use FedAvg [18], FedProx [16], FedOpt [20], Scaf-
fold [12], and MOON [15] as base FL algorithms. For all
of these algorithms, we take H communication rounds, and
select R ∗ 100.0% clients during each round. Each client
updates the global model on their private data for E epochs.
For FedProx, the regularization coefficient of the proximal
term is tuned in {1e − 4, 1e − 3} and the best one is re-
ported. For FedOpt, we take SGD with momentum 0.9 as
the global optimizer, and tune the global learning rate in
{0.1, 0.5, 0.9}, which is similar to FedAvgM [10]. We also
try using Adam as the global optimizer and find the perfor-
mances are not stable. For Scaffold, we use the implemen-
tation from the online page 1. For MOON, we set the coef-
ficient of the contrastive loss as 1.0, which is recommended
by the authors. We then replace the normal neurons with
the proposed PANs to improve these algorithms. We keep
T = 1 by default and tune hyper-parameters from: PAN+

with A = 0.05, PAN◦ with A = 0.05, PAN◦ with A = 0.1.

1https : / / github . com / ramshi236 / Accelerated -
Federated - Learning - Over - MAC - in - Heterogeneous -
Networks

OFF (A=0.0) [0.219] ON (PAN◦ A=0.1) [0.766]

Figure 7. Optimal assignment matrix with PANs off/on, left vs.
right. (α = 1.0,E = 20, MLP FC3 on Mnist.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.277]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.383]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 8. Preference vectors with PANs off/on, left vs. right. (α =

1.0, VGG9 Conv5 on Cifar10.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.258]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.293]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 9. Preference vectors with PANs off/on, left vs. right. (α =

1.0, VGG9 Conv4 on Cifar10.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.500]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.500]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 10. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, MLP FC4 on Mnist.)



FeMnist GTSRB SVHN Cifar10 Cifar100 Cinic10
MLP VGG9 VGG9 VGG11 ResNet20 ResNet20

SGD + Momentum=0.9 (LR in {0.05,0.1}) 53.39 86.96 89.93 84.57 70.82 82.76
Adam (LR=3e-4) 54.25 90.84 91.13 87.13 67.22 81.99

Table 1. The performances of centralized training with corresponding networks (without PANs), i.e., the upper bound of decentralized
training (FL).

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.555]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.570]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 11. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, MLP FC3 on Mnist.)

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

FedAvg

PANs OFF

PANs ON 0.2

0.4

0.6

0.8

FedOpt

PANs OFF

PANs ON
0.4

0.6

0.8

Scaffold

PANs OFF

PANs ON 0.4

0.6

0.8

FedProx

PANs OFF

PANs ON 0.3

0.4

0.5

0.6

MOON

PANs OFF

PANs ON G
T

S
R

B
V

G
G

9

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

0.95

T
es

t
A

cc
ur

ac
y

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

0.95

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.800

0.825

0.850

0.875

0.900
PANs OFF

PANs ON

S
V

H
N

V
G

G
9

Figure 12. Comparison results on non-i.i.d. data (α=0.1). Rows
show datasets and columns show FL algorithms. PANs could uni-
versally improve these algorithms.

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.82

0.84

0.86

0.88

0.90

0.92

0.94

T
es

t
A

cc
ur

ac
y

+0.27 +0.07

+0.34

+0.73
+0.25

Cifar10 α=10.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.82

0.84

0.86

0.88

0.90

0.92

+0.14
+0.24

+0.07

+0.97 +0.76

Cifar10 α=1.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.78

0.80

0.82

0.84

0.86

0.88

0.90

+1.80

+1.53

+0.28

+1.56 +2.00

Cifar10 α=0.5

OFF

ON

Figure 13. Comparisons under various levels of non-i.i.d. data on
Cifar10. Smaller α implies more non-i.i.d. data.

4. Experimental Details

4.1. Shuffle Test and Shuffle Test in FL

We propose a procedure to measure the degree of per-
mutation invariance of a certain neural network, that is,
how large the shuffle error is after shuffling the neurons.
The shuffle process is shown in Alg. 1, where Psf controls
the disorder level of the constructed permutation matrices.
Some additional descriptions are: (1) the permutation ma-
trix (PM) should be randomly generated and we don’t need

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

T
es

t
A

cc
ur

ac
y

+1.47

+0.49

+0.36

+0.15 +0.05

Cifar100 α=10.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

+0.55

+1.92

+0.21

+1.03 +0.80

Cifar100 α=1.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.55

0.60

0.65

0.70

+2.19

+2.30

+0.98

+0.72 +1.41

Cifar100 α=0.5

OFF

ON

Figure 14. Comparisons under various levels of non-i.i.d. data on
Cifar100. Smaller α implies more non-i.i.d. data.

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

+1.40 +1.32 +4.14

+8.25

+4.33

+4.24

Cifar10 VGG11 Scaffold

OFF

ON

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100
0.3

0.4

0.5

0.6

0.7

+0.41 +0.39
+0.98

+0.53
+1.81

+1.64

Cifar100 ResNet20 Scaffold

OFF

ON

Figure 15. Comparisons under different FL scenes (K, E) based
on Scaffold.

to solve it; (2) PMs are introduced just to verify the property
of PANs that they can disable the permutation invariance of
neural networks, which is not used in our FedPAN algo-
rithm; (3) the computational complexity is O(J), requiring
at most J swaps, which is very efficient to implement during
simulation.

We introduce the shuffle test in the body of this paper.
Specifically, we manually shuffle the network and study the
output change, i.e., the shuffle error defined in the body.
A hyper-parameter Psf is used to control the disorder of
permutation. Given a Psf, we could generate a permuta-
tion matrix Π, then we calculate how many neurons are not
shuffled via computing “Rkept=np.mean(np.diag(Π))”. We
use the functions provided in the Numpy 2 package. This
is calculated and its correspondence to Psf is shown in the
body. The shuffle process is also applied to FL. Specifi-
cally, we present the Pseudo-Code in Alg. 2. Easily, the
model will be shuffled for Nsf times during local training in

2https://numpy.org/



A
=

0.
0

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
01

A
=

0.
03

A
=

0.
1

A
=

0.
15

A
=

0.
2

A
=

0.
25

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
05

A
=

0.
1

A
=

0.
2

A
=

0.
25

A
=

0.
5

A
=

0.
75

FedAvg Cifar10 α=0.1 2000 Rounds VGG11

0.830

0.835

0.840

0.845

T
es

t
A

cc
ur

ac
y

Baseline PAN+ A=0.05 PAN+ T=8 PAN◦ A=0.15 PAN◦ T=8

Figure 16. Hyper-parameter analysis on Cifar10 with VGG11.

A
=

0.
0

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
01

A
=

0.
03

A
=

0.
1

A
=

0.
15

A
=

0.
2

A
=

0.
25

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
05

A
=

0.
1

A
=

0.
2

A
=

0.
25

A
=

0.
5

A
=

0.
75

FedAvg Cifar100 α=0.1 2000 Rounds ResNet20

0.66

0.67

0.68

T
es

t
A

cc
ur

ac
y

Baseline PAN+ A=0.05 PAN+ T=8 PAN◦ A=0.15 PAN◦ T=8

Figure 17. Hyper-parameter analysis on Cifar100 with ResNet20.

expectation. Hence, we calculate the corresponding Rkept
as the diagonal ones after several accumulative permuta-
tion, i.e., “Rkept=np.mean(np.diag(Πrk · · ·Π2Π1))”, where
Π1, Π2, and Πrk denote the generated permutation matri-
ces in each local update step. We simulate the process for a
single layer 10 times and calculate the averaged Rkept. We
keep Psf = 0.1 and show the relations of Rkept and Nsf in
the body.

5. Additional Experimental Results
Shuffle Error on Random Data: We investigate the shuffle
error via taking the random data as input in the body, where
we only present the results based on VGG13. We report
similar results on MLP and ResNet20, which are shown in
Fig. 2 and Fig. 3. Multiplicative PANs with a larger A make
the network more sensitive to neuron permutation.
Weight Divergence: Our proposed PANs could decrease
the weight divergence during FL. Specifically, we split the
training data onto K = 10 clients with α ∈ {1.0, 0.1} and
select all clients in each round, i.e., R = 1.0. We take
H = 20 communication rounds and then calculate the local
gradient variance as an approximation. We vary the number
of local epochs E ∈ {5, 20}. We only report the results on
Mnist with E = 5 in the body. Additional results of Mnist
with E = 20 (Fig. 4) and Cifar10 with E = 5 (Fig. 5)
further verify that PANs could decrease the local gradient
variance.

Matching via Optimal Assignment: We first train a global
model via FL forH = 20 communication rounds, where the
scene contains 10 clients with α = 1.0. Then, we randomly
sample a local client and update the global model for E
epochs. Our goal is to search for a matrix to match the neu-
rons of the global model and the updated one, i.e., the local
model of this client. We then use 500 test samples to obtain
the neuron’s activations as their representations. Hence, the
optimal assignment problem could be solved and the assign-
ment matrix is a permutation matrix. The results on various
layers of VGG9 and MLP are shown in Fig. 6 and Fig. 7.
Notably, the calculated matching ratio, i.e., the number in
“[]”, is only an approximated value which represents how
much neurons are shuffled. The absolute value (e.g., 0.062)
does not represent the actual permutation during training.
Visualizing Neurons via Preference Vectors: Similarly,
more of the visualization results via preference vectors of
neurons are provided in Fig. 8, Fig. 9, Fig. 10, and Fig. 11.
Notably, there are only 10 neurons in Fig. 10 because FC4
is the output layer with 10 classes. Using PANs could en-
courage neurons at the same position contribute to the same
classes as much as possible.
Universal Application of PANs: We report the results of
applying PANs to popular FL algorithms on FeMnist, Ci-
far10, Cifar100, and Cinic10 in the body. We show the re-
sults on SVHN and GTSRB in Fig. 12. Training on GTSRB
is not stable, and some algorithms will converge slower,



A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.82

0.84

0.86

0.88

0.90

T
es

t
A

cc
ur

ac
y

GTSRB VGG8 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.86

0.88

0.90

0.92

0.94

SVHN VGG8 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.80

0.82

0.84

0.86

0.88

Cifar10 VGG11 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.66

0.68

0.70

0.72

0.74

Cifar100 ResNet20 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.86

0.88

0.90

0.92

0.94

T
es

t
A

cc
ur

ac
y

GTSRB VGG8 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.88

0.90

0.92

0.94

0.96
SVHN VGG8 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.84

0.86

0.88

0.90

0.92
Cifar10 VGG11 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.64

0.66

0.68

0.70

0.72

Cifar100 ResNet20 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

Figure 18. Performances of centralized training with PANs. The two parts respectively show the results of additive PANs and multiplicative
PANs.

e.g., FedAvg and FedOpt. This could be improved with the
additional effort of tuning learning rates, while we omit this
in this paper. Comparison results on Cifar10 and Cifar100
under various levels of non-i.i.d. data are shown in Fig. 13
and Fig. 14. The improvements under various scenes based
on Scaffold are shown in Fig. 15. These additional results
further verify the universal application of PANs to improve
the performance of FL.
Hyper-parameter Analysis: We present the performances
of various A with PAN◦ when T = 1 in the body and point
out that setting A = 0.1 is a good choice. Here, we present
a more comprehensive analysis with both additive and mul-
tiplicative PANs. The used FL scene is: K = 100, α = 0.1,
H = 2000, R = 0.1, E = 5. We plot the results on Ci-
far10 with VGG11 and Cifar100 with ResNet20 in Fig 16
and Fig. 17. The leftmost point shows the baseline of the
performance. The four parts in different colors show the
results with various T or A, while the other one is fixed.
For example, the first part shows the performances with
T ∈ {1, 2, 4, 8, 12, 16, 32} in PAN+, while A is fixed to
0.05. Clearly, with fixed T , a larger A leads to degrada-
tion (the green and the red part). Setting A around 0.1 for
PAN◦ is recommended. The results on Cifar100 are more
invariant to T , although the performances fluctuate a lot on
Cifar10. Many of these hyper-parameters could surpass the
baseline.

6. More Studies
6.1. Centralized Training

We report the test accuracies of centralized training on
FeMnist, GTSRB, SVHN, Cifar10, Cifar100, and Cinic10.
The utilized networks are correspondingly MLP, VGG9,
VGG9, VGG11, ResNet20, and ResNet20. The numbers
of training epochs are respectively 30, 20, 30, 30, 100, and

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interpolation µ

0.7

0.8

0.9
T

es
t

A
cc

ur
ac

y

Mnist MLP

Avg

OT+Avg

PANs+OT+Avg

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interpolation µ

0.2

0.4

0.6

T
es

t
A

cc
ur

ac
y

Cifar10 VGG9

Avg

OT+Avg

PANs+OT+Avg

Figure 19. Model fusion of MLP on Mnist (Left) and VGG9 on
Cifar10 (Right) with direct parameter averaging, optimal transport,
and PANs. The x-axis shows the interpolation coefficient.

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

Cifar10 VGG11

VGG11-BN-N:78.81

VGG11-BN-Y:77.57

VGG11-GN1:81.67

VGG11-GN2:81.43

VGG11-GN8:80.51

VGG11-GN32:80.52

VGG11-GN1-PAN:81.93

0 20 40 60 80 100

0.2

0.3

0.4

0.5

Cifar100 VGG11

VGG11-BN-N:54.38

VGG11-BN-Y:55.13

VGG11-GN1:51.88

VGG11-GN2:49.98

VGG11-GN8:50.37

VGG11-GN32:50.83

VGG11-GN1-PAN:52.11

0 20 40 60 80 100

Communication Round

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

Cifar10 ResNet20

ResNet20-BN-N:84.57

ResNet20-BN-Y:82.41

ResNet20-GN1:79.12

ResNet20-GN2:78.44

ResNet20-GN8:75.26

ResNet20-GN32:73.62

ResNet20-GN1-PAN:79.07

0 20 40 60 80 100

Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

Cifar100 ResNet20

ResNet20-BN-N:64.85

ResNet20-BN-Y:65.85

ResNet20-GN1:50.42

ResNet20-GN2:48.01

ResNet20-GN8:46.63

ResNet20-GN32:51.50

ResNet20-GN1-PAN:48.79

Figure 20. Comparisons of different normalization techniques in
ConvNet. The top is based on VGG11 and the bottom is based on
ResNet20. We use datasets Cifar10 and Cifar100.

100. We utilize both SGD with momentum 0.9 and Adam
as the optimizer. For SGD, we use 0.05 as the learning rate
for MLP and VGG, while 0.1 for ResNet20. For Adam, we



use 0.0003 for all networks. The performances are listed
in Tab. 1. We then add PANs to some datasets and find
that the performances degrade slightly. We vary the hyper-
parameter A in PANs while keeping T = 1. The results
are shown in Fig. 18. Using PANs could harm the training
process slightly, and commonly, a larger A could make the
results worse. Although we try utilizing the adaptive opti-
mizer (i.e., Adam), the results of utilizing PANs do not im-
prove. Advanced optimizers should be proposed to mitigate
the degradation, which is left for future work.

6.2. Optimal Transport for Model Fusion

FL should send down the global model to local clients as
the initialization during each communication round. If not,
coordinate-based parameter averaging will become worse.
The work [22] studies model fusion with different initial-
izations, and utilizes optimal transport [1] to align model
parameters. We split Mnist and Cifar10 into two parts uni-
formly. We train independent models on these two sets cor-
respondingly. The obtained models after training 20 epochs
are denoted as θA and θB . Then, an interpolation is eval-
uated, i.e., (1 − µ)θA + µθB , µ ∈ [0, 1]. Directly av-
eraging these two models will perform poorly, which is
shown in Fig 19 (the line with legend “Avg”). If we align
the models via optimal transport and then interpolate the
aligned models, the results become better (the line with leg-
end “OT+Avg” in Fig 19). We further add PANs during
model training and the performances could be slightly im-
proved (the line with legend “PANs+OT+Avg” in Fig 19).
This shows that PANs may still be helpful with different
initializations.

6.3. BatchNorm vs. GroupNorm

We then investigate the normalization techniques in deep
neural networks. Previous FL works point out that Group-
Norm may be more applicable to FL with non-iid data [9].
Specifically, BatchNorm calculates the mean and variance
of a data batch, which is relevant to local training data.
Hence, the statistical information in BatchNorm will di-
verge a lot across clients. One solution is aggregating the
statistical information during FL, i.e., averaging the “run-
ning mean” and “running variance” in BatchNorm. We de-
note this as “BN-Y”. In contrast, we use “BY-N” to rep-
resent the method that “running mean” and “running vari-
ance” are not aggregated. We also vary the number of
groups in GroupNorm, i.e., {1, 2, 8, 32}, which are denoted
as “GN1”, “GN2”, “GN8”, and “GN32”. We list the con-
vergence curves on Cifar10 and Cifar100 in Fig. 20. We use
VGG11 and ResNet20 as the backbone. The numbers in the
legends denote the final test accuracies. GroupNorm only
improves the performances of Cifar10 with VGG11. Ad-
ditionally, setting the number of groups as 1 is better. We
also apply PANs to networks with “GN1” and find the per-

formance does not improve. The combination of PANs with
various normalization techniques is also interesting, which
is also left for future work.

6.4. Personalization in FL

Finally, we present some possible varieties of PANs for
personalization in FL. In the body of this paper, we take
the same position encodings among clients and implicitly
make neurons combined with their positions. However, if
we take different position encodings or partially shared po-
sition encodings among clients, we could let similar clients
contribute more. Some clients own individual positions,
which could be utilized for personalization. These ideas are
also left for future work.

References
[1] Martial Agueh and Guillaume Carlier. Barycenters in the

wasserstein space. SIMA, 43(2):904–924, 2011. 7
[2] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný,

H. Brendan McMahan, Virginia Smith, and Ameet Tal-
walkar. LEAF: A benchmark for federated settings. CoRR,
abs/1812.01097, 2018. 1

[3] Giulia Fanti Charlie Hou, Kiran Thekumparampil and Se-
woong Oh. Multistage stepsize schedule in federated learn-
ing: Bridging theory and practice. In ICML Workshop, 2021.
2

[4] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. EMNIST: an extension of MNIST to handwrit-
ten letters. CoRR, abs/1702.05373, 2017. 1

[5] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou,
and Amos J. Storkey. CINIC-10 is not imagenet or CIFAR-
10. CoRR, abs/1810.03505, 2018. 1

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 1

[7] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi
Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek
Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang
Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram,
and Salman Avestimehr. Fedml: A research library
and benchmark for federated machine learning. CoRR,
abs/2007.13518, 2020. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1, 2

[9] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B.
Gibbons. The non-iid data quagmire of decentralized ma-
chine learning. In ICML, pages 4387–4398, 2020. 1, 7

[10] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-
suring the effects of non-identical data distribution for feder-
ated visual classification. CoRR, abs/1909.06335, 2019. 3

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, pages 448–456, 2015. 2



[12] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank J. Reddi, Sebastian U. Stich, and Ananda Theertha
Suresh. SCAFFOLD: stochastic controlled averaging for
federated learning. In ICML, pages 5132–5143, 2020. 3

[13] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2012. 1

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 1

[15] Qinbin Li, Bingsheng He, and Dawn Song. Model-
contrastive federated learning. In CVPR, pages 10713–
10722, 2021. 3

[16] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. In MLSys, 2020. 3

[17] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin
Jaggi. Ensemble distillation for robust model fusion in fed-
erated learning. In NeurIPS, 2020. 1, 2

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In AISTATS, pages 1273–1282, 2017. 3

[19] Yuval Netzer, Tiejie Wang, Adam Coates, A. Bissacco, Bo
Wu, and A. Ng. Reading digits in natural images with unsu-
pervised feature learning. 2011. 1

[20] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. Adaptive federated optimization.
In ICLR, 2021. 3

[21] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 1, 2

[22] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal
transport. In NeurIPS, 2020. 7

[23] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The german traffic sign recognition bench-
mark: A multi-class classification competition. In IJCNN,
pages 1453–1460, 2011. 1

[24] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S.
Papailiopoulos, and Yasaman Khazaeni. Federated learning
with matched averaging. In ICLR, 2020. 1, 2


