
Appendix of Grounded Language-Image Pre-training

This appendix is organized as follows.

• In Section A, we provide more visualizations of our
model’s grounding predictions on the Conceptual Cap-
tion 12M dataset [1].

• In Section B (referred by Section 3.1), we discuss the
equivalence between detection and grounding.

• In Section C.1 (referred by Section 4), we introduce
the pre-training details of the models we use in Section
4.

• In Section C.2 (referred by Section 4), we introduce
the evaluation details of experiments on COCO, LVIS,
and Flickr30K.

• In Section C.3 (referred by Section 4), we discuss the
difference between the public image-text data (Google
Conceptual Captions,SBU) and the image-text data we
collected.

• In Section D, we provide a detailed analysis on the
computational cost and performance effect of the
language-aware deep fusion.

• In Section E.1 (referred by Section 5), we introduce the
13 datasets in Object Detection in the Wild (ODinW).

• In Section E.2 (referred by Section 5), we detail the
manual prompt design.

• In Section E.3 (referred by Section 5.1), we give the
details for the data efficiency experiments.

• In Section E.4 (referred by Section 5.3), we give the
details for the linear probing and prompt tuning exper-
iments.

• In Section E.5, we present per-dataset results for all
experiments in Section 5.

A. Visualization
We provide more visualizations of the predictions from

our teacher model. Even given noise image-text pairs, our
model is still capable of grounding semantic-rich phrases
accurately.

this week i'm going to share 20 
ideas with you. 20 different 
lunchbox ideas. packing school 
lunch is about nourishment.save the straws classic t-shirt

person battles with person in the 
production sedans

hard times teach us valuable lessons. 
handwriting on a napkin with a cup of 
coffee stock photos

dwarf fruit tress are perfect for 
small spaces. here are 10 dwarf 
fruit trees which you can easily 
grow on your porch, or in 
containers or on the terrace. 
banana plants, fruit plants, fruit 
garden, garden trees, fruit and 
veg, fruits and vegetables, fresh 
fruit, apple plant, guava tree

sketch illustration - female hands write 
with a pen. arm, art, background, 
black, care, concept, counting, design, 
drawing, finger, fingers, five, gesture 
royalty free illustration

Figure 1. Predictions from the teacher model on 6 examples from
Conceptual Captions 12M. Phrases and corresponding boxes are
matched with the same colors.
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B. Equivalence Discussion between Detection
and Grounding

In Section 3.1 of the main paper, we discussed the equiv-
alence between detection and grounding. We corroborate
the discussion with empirical experiments.

When all object categories fit into a single prompt. We
first confirm that when all categories fit into one prompt,
our grounding formulation is equivalent to classical object
detection. We conduct the experiments on COCO [6]. We
first choose the SoTA detection model Dynamic Head (Dy-
Head) [2] based on the Swin-Tiny Transformer backbone
[7] as the base object detection mode. We then transform
this model into a grounding model as described in Section
3.1: we concatenate the 80 class names with “. ” into one
prompt and replace DyHead’s classification loss with our
grounding loss. We use BERT (base-uncased) [3] to encode
the text prompt. When concatenating the class names, we
follow a fixed order.

We train the two models with the exact same hyperpa-
rameters as in [2]: we train with the standard 2x training
configurations [4]. We train with batch size 32 and learning
rate 1× 10−4 (for the model with grounding reformulation,
we use 1× 10−5 for the BERT text encoder). We decay the
learning rate at 67% and 89% of the total training steps.

The two models achieve the same performance on
COCO 2017val: 49.4 AP. Their results are close to the 49.7
reported in the last row of Table 6 of Dai et al. [2] (the
small difference is presumably due to the implementation
difference). Thus, we conclude that when all categories can
fit into a single prompt, grounding and detection tasks are
equivalent.

When not all object categories can fit into a single
prompt. The text encoder for the prompt has a limit on
the input sentence length. For example, BERT can only
encode sentences containing at most 512 tokens. In our im-
plementation, to reduce computational costs, we limit the
input length to 256. Thus, for certain datasets with a large
vocabulary (e.g., Objects365 [8] has 365 object categories),
we cannot fit all category names into one prompt. As a prac-
tical solution, we can split the category names into multiple
prompts, during both training time and inference time. We

Pre-Train Data COCO LVIS minival Flickr30K val
Zero-Shot Fine-Tune APr APc APf AP R@1 R@5 R@10

O365,GoldG,Cap4M 46.3 54.9 20.8 21.4 31.0 26.0 85.7 95.4 96.9
O365,GoldG,CC3M,SBU 46.6 55.2 20.1 21.3 31.1 25.9 85.3 95.7 97.2

Table 1. Comparison between public data and data crawled by us.

find that this incurs minor performance drop. For exam-
ple, in Table 2 in the main paper, DyHead-T pre-trained
on Objects365 achieves 43.6 on COCO zero-shot, while
GLIP-T (A) (the grounding reformulated model of DyHead)
achieves 42.9 on COCO.

C. Transfer to Established Benchmarks
We introduce the implementation details of the models

used in Section 4 and discuss the difference between public
image-text data and the data crawled by us.

C.1. Pre-training Details

In Section 4, we introduced GLIP-T (A), GLIP-T (B),
GLIP-T (C), GLIP-T, and GLIP-L. We introduce the im-
plementation details in the following. We pre-train models
based on Swin-Tiny models with 32 GPUs and a batch size
of 64, and models based on Swin-Large with 64 GPUs and
a batch size of 64. We use a base learning rate of 1× 10−5

for the language backbone and 1×10−4 for all other param-
eters. The learning rate is stepped down by a factor of 0.1
at the 67% and 89% of the total training steps. We decay
the learning rate when the zero-shot performance on COCO
saturates. The max input length is 256 tokens for all models.

Prompt design for detection data. As noted in Section
B, when we pre-train on datasets such as Objects365, we
cannot fit all categories into one prompt. During pre-
training, we randomly down-sample the categories and keep
only the down-sampled categories in the prompt. We ran-
domly shuffle the categories’ order in the prompt. If a pos-
itive category is discarded and not kept in the prompt after
down-sampling, we will also drop its corresponding boxes
from the box labels.

The down-sampling is done randomly on the fly for each
training example and serves as data augmentation. Specif-
ically, for an example, we denote the positive classes that
appear in the image as Cpos and the rest negative classes as
Cneg. With a probability of 0.05, we sample one positive
category from Cpos; with a probability of 0.05, we sample
one negative category from Cneg; with a probability of 0.5,
we keep all of Cpos and sample from Cneg till we have 85
categories in the prompt. For the rest of the time, we uni-
formly choose a number N from 1-85 and put N categories
in the prompt; we always prioritize positive categories; but
with a probability of 0.2, we might drop some positive cat-
egories from the prompt.



Augmentation for image-text data with generated boxes.
When we pre-train the model on image-text data with gen-
erated boxes, we find it beneficial to increase the difficulty.
We mix a few negative captions (that are from other ex-
amples and do not match with the image) with the positive
caption (that is matched to the image) to form a longer text
input. The model is trained to predict boxes and align them
to the correct phrases in the positive caption. The model
would need to first identify the positive caption among a
few potential captions and then align the box to the correct
phrases in the positive caption. This makes the grounding
task more challenging and help the model learn a semantic-
rich representation during pre-training. This augmentation
is also done randomly on the fly. For each training exam-
ple, with a probability of 0.3, we conduct such augmenta-
tion and mix in 19 negative captions; with a probability of
0.3, we mix in a random number (uniformly drawn between
1-19) of negative captions; for the rest of the time, we do
not conduct such augmentation.

C.2. Evaluation Details

For fine-tuning on COCO, we use a base learning rate of
1× 10−5 for pre-trained models.

For zero-shot evaluation on LVIS, since LVIS has over
1,000 categories and they cannot be fit into one text prompt,
we segment them into multiple chunks, fitting 40 categories
into one prompt and query the model multiple times with
the different prompts. We find that models tend to overfit
on LVIS during the course of pre-training so we monitor
the performance on minival for all models and report the
results with the best checkpoints.

For zero-shot evaluation on Flickr30K, models may also
overfit during the course of pre-training so we monitor the
performance on the validation set for all models and report
the results with the best checkpoints.

C.3. Difference Between Public Data and Web-
Crawled Data

For GLIP-T pre-trained with image-text data, as men-
tioned in Section 4, we train two versions, one with pub-
lic data (CC3M,SBU) and another with data we crawled
(Cap4M). Here we provide a comparison between the two
models in Table 1.

The two models differ only slightly, with the Cap4M ver-
sion better on LVIS while the CC3M+SBU version better on
COCO. We conjecture that this is potentially because the
public data is more extensively screened and contains more
common categories and less rare concepts. Thus it performs
slightly better on COCO while lags slightly on LVIS.

Model Fusion Inference (P100) Train (V100)
Speed Memory Speed Memory

GLIP-T ✗ 4.84 FPS 1.0 GB 2.79 FPS 11.5 GB
✓ 2.52 FPS 2.4 GB 1.62 FPS 16.0 GB

GLIP-L ✗ 0.54 FPS 4.8 GB 1.27 FPS 19.7 GB
✓ 0.32 FPS 7.7 GB 0.88 FPS 23.4 GB

Table 2. Computational cost of language-aware deep fusion. For
speed, we report FPS, which is the number of images processed
per second per GPU (higher is better). For memory consumption,
we report the GPU memory used in GB (lower is better). Deep
fusion brings less than 1x additional computational cost.

D. Computation Cost and Performance Analy-
sis of Deep Fusion

In this section, we provide a more detailed ablation
on the computational cost and performance effect of the
language-aware deep fusion proposed in Section 3.

D.1. Computational Cost

We test the additional computational cost of the
language-aware deep fusion for both GLIP-T and GLIP-L.
For inference, we test on a P100 GPU with batch size 1.
Note that for inference with GLIP without deep fusion, we
could cache the language embeddings of the prompts; thus
the inference time of GLIP without deep fusion is equiva-
lent to that of DyHead [2].

For training, we test on a standard DGX-2 machine with
16 V100 GPUs (we test under the multi-GPU setting as
it mimics the actual training environment): for GLIP-T
models, we use 2 images per batch and for GLIP-L mod-
els, we use 1 images per batch. As the fusion module in-
vovles multi-head attention over a large number of input
elements, we turn on gradient checkpointing1 for the deep
fusion module, which increases training time but reduces
GPU memory consumption.

Table 2 shows that the language-aware deep fusion
brings less than 1x additional computational cost overall.

D.2. Performance

We provide an analysis on the effect of language-aware
deep fusion when different kinds of pre-training data are
used. We pre-train four variants of GLIP-T and show the
results In Table 3. Deep fusion is beneficial for testing
on 1) common categories (i.e., COCO); 2) grounding tasks
(i.e., Flickr30K), and 3) low-resource transfer to real-world
downstream tasks (i.e., ODinW).

However, on LVIS, the effect of deep fusion seems un-
clear: when only detection data are used, deep fusion seems

1https : / / pytorch . org / docs / stable /
checkpoint.html

https://pytorch.org/docs/stable/checkpoint.html
https://pytorch.org/docs/stable/checkpoint.html


Deep Fusion Data COCO LVIS minival Flickr30K val ODinW
Zero-Shot Fine-Tune APr APc APf AP R@1 R@5 R@10 0-Shot 1-Shot 3-Shot 5-Shot 10-Shot Full-Shot

✗ O365 42.9 52.9 14.2 13.9 23.4 18.5 46.4 63.2 66.9 28.7 43.5 48.8 50.4 54.1 63.6
✓ O365 44.9 53.8 13.5 12.8 22.2 17.8 41.4 57.7 61.0 33.2 48.0 52.0 53.2 54.9 62.7

✗ O365,GoldG 41.6 52.9 15.8 23.0 30.8 26.1 82.4 94.7 96.6 35.5 47.2 51.9 53.8 54.3 65.1
✓ O365,GoldG 46.7 55.1 17.7 19.5 31.0 24.9 84.8 94.9 96.3 44.4 49.6 53.8 54.8 57.2 63.9

Table 3. Language-aware fusion benefits most tasks. We reported the full-model tuning performance for ODinW few-shot results. For
models trained with only O365, performance on Flickr30K (grey numbers) is significantly worse because the models are not trained to
ground natural language captions.

to degrades performance (row 1 v.s. row 2); when ground-
ing data are present, deep fusion degrades common category
performance but improves rare category performance. Our
assumption is that when GLIP is only trained with detection
data (e.g., O365), the language model could “overfit” to the
categories in O365 and does not generalize to novel cate-
gories well (i.e., outputs out-of-distribution text representa-
tion). The deep fusion could “amplify” such overfit as the
visual representation is conditioned on the language model.
Thus, when tested on prompts containing novel categories
(e.g., LVIS), deep fusion could degrade performance. When
grounding data are used, such overfit could be mitigated.

E. Object Detection in the Wild
In this section, we provide the details and additional re-

sults for the experiments in Section 5.

E.1. Dataset Details

We use 13 datasets from Roboflow2. Roboflow hosts
over 30 datasets and we exclude datasets that are too chal-
lenging (e.g., detecting different kinds of chess pieces) or
impossible to solve without specific domain knowledge
(e.g., understanding sign language).

We provide the details of the 13 datasets we use in Table
4. We include the PASCAL V0C 2012 dataset as a refer-
ence dataset, as public baselines have been established on
this dataset. For PascalVOC, we follow the convention and
report on validation set. For Pistols, there are no official
validation or test sets so we split the dataset ourselves.

E.2. Manual Prompt Tuning

As discussed in Section 5, we find it beneficial to man-
ually design some prompts to provide language guidance.
We provide the prompts we use in Table 5. We design
the prompts for 6 datasets. Since some prompts are sen-
tences, we only apply these prompts for models trained
with grounding data (GLIP-T (C), GLIP-T, and GLIP-L).
For GLIP-T (A) and GLIP-T (B), we find it beneficial to
use prompts for the Rabbits and Mushrooms datasets, as the

2https : / / public . roboflow . com / object -
detection
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Figure 2. Per dataset zero-shot performance. The first 3 datasets
contain novel categories not present in the Objects365 vocabulary
while the last 2 datasets’ categories are covered by Obj365 data.
Grounding data bring significant benefit to novel categories.

prompts there are just single word or short phrases. Overall,
using prompts improves AP without any model re-training
(e.g., the AP improves from 22.1 to 50.0 for EgoHands).

E.3. Data Efficiency

We provide details for the experiments in Section 5.1.
We train with batch size 4, learning rate 1 × 10−4 (for the
model with grounding reformulation, we use 1 × 10−5 for
the BERT text encoder), and weight decay of 0.05. We do
not find that increasing batch size improves performance
significantly. For computational reasons, we use a batch
size of 4. Following convention, we freeze the bottom 2
layers of the backbone during fine-tuning. We monitor the
performance on validation and decay the learning rate by
0.1 when the validation performance plateaus. In X-shot
settings, we randomly sample the dataset such that there are
at least X examples per category [5]. We change the ran-
dom seeds (and thus change the sampled data) and conduct
3 independent runs for each X-shot experiment. We pro-

https://public.roboflow.com/object-detection
https://public.roboflow.com/object-detection


Dataset Objects of Interest Train/Val/Test URL

PascalVOC Common objects (PascalVOC 2012) 13690/3422/- https://public.roboflow.com/object-detection/pascal-voc-2012

AerialDrone Boats, cars, etc. from drone images 52/15/7 https://public.roboflow.com/object-detection/aerial-maritime

Aquarium Penguins, starfish, etc. in an aquarium 448/127/63 https://public.roboflow.com/object-detection/aquarium

Rabbits Cottontail rabbits 1980/19/10 https://public.roboflow.com/object-detection/cottontail-rabbits-video-dataset

EgoHands Hands in ego-centric images 3840/480/480 https://public.roboflow.com/object-detection/hands

Mushrooms Two kinds of mushrooms 41/5/5 https://public.roboflow.com/object-detection/na-mushrooms

Packages Delivery packages 19/4/3 https://public.roboflow.com/object-detection/packages-dataset

Raccoon Raccoon 150/29/17 https://public.roboflow.com/object-detection/raccoon

Shellfish Shrimp, lobster, and crab 406/116/58 https://public.roboflow.com/object-detection/shellfish-openimages

Vehicles Car, bus, motorcycle, truck, and ambulance 878/250/126 https://public.roboflow.com/object-detection/vehicles-openimages

Pistols Pistol 2377/297/297 https://public.roboflow.com/object-detection/pistols/1

Pothole Potholes on the road 465/133/67 https://public.roboflow.com/object-detection/pothole

Thermal Dogs and people in thermal images 142/41/20 https://public.roboflow.com/object-detection/thermal-dogs-and-people

Table 4. 13 ODinW dataset statistics. We summarize the objects of interest for each dataset and report the image number of each split.

Dataset Original Prompt AP Manually Designed Prompts AP

Aquarium
penguin

17.7
penguin, which is black and white

18.4puffin puffin with orange beaks
stingray stingray which is flat and round

Rabbits Cottontail-Rabbits 68.0 rabbit 70.2

EgoHands hand 22.1 hand of a person 50.0

Mushrooms Cow. Chanterelle 13.6 flat mushroom. yellow mushroom 73.8

Packages package 50.0 there is a package on the porch 72.3

Pothole pothole 17.8 there are some holes on the road 17.7

Table 5. Manually designed prompts for 6 datasets. Words in italic
are the objects of interest. The prompts either provide attributes,
specify the category name in more common words, or provide lan-
guage contexts. They can improve AP (CLIP-T) without any an-
notation or model re-training. Specifically for Pothole, although
the changed prompt does not improve the AP of CLIP-T, we find
it effective for CLIP-T (C) so we still apply the prompt.

Model Zero Shot Full Tuning
1 3 5 10 All

DyHead-T COCO - 31.9±4.1 44.2±0.4 44.7±2.1 50.1±2.0 63.2
DyHead-T O365 - 33.8±4.3 43.6±1.2 46.4±1.4 50.8±1.6 60.8

GLIP-T (A) 28.7 43.5±1.5 48.8±0.4 50.4±0.7 54.1±0.5 63.6
GLIP-T (B) 33.2 48.0±0.8 52.0±0.4 53.2±0.9 54.9±0.7 62.7
GLIP-T (C) 44.4 49.6±0.3 53.8±0.2 54.8±1.0 57.2±1.1 63.9
GLIP-T 46.5 51.1±0.1 54.9±0.3 56.4±0.5 58.4±0.2 64.9

GLIP-L 52.1 59.9±1.7 62.1±0.8 64.2±0.4 64.9±0.9 68.9

Table 6. Zero-shot and full fine-tuning performance. GLIP models
exhibit superior data efficiency.

vide two DyHead-T variants as baselines, one trained on
COCO and one trained on Objects365. We report the full
zero-shot results in Table 9 and few-shot results in Table 6.

We further plot the zero-shot performance of GLIP vari-
ants on 5 different datasets in Figure 2. We find that the
introduction of grounding data brings significant improve-
ment on certain tasks that test novel concepts, e.g., on Pot-
hole and EgoHands, models without grounding data (A&B)
performs terribly, while models with grounding data (C)

Model Linear Probing
1 3 5 10 All

DyHead-T COCO 22.7±1.1 32.7±1.4 30.5±2.9 34.1±1.4 43.1
DyHead-T COCO-Cosine 21.8±4.4 30.6±2.2 33.3±1.2 35.5±1.2 43.5
DyHead-T O365 30.7±3.3 36.2±3.3 39.6±0.4 40.0±2.7 48.2
DyHead-T O365-Cosine 25.2±2.6 37.6±0.5 38.9±0.7 41.5±0.5 49.4

GLIP-T (A) 34.6±0.7 35.9±0.2 37.6±0.1 37.9±0.2 44.1
GLIP-T (B) 40.9±0.3 42.8±0.4 44.0±0.2 44.4±0.3 51.8
GLIP-T (C) 43.9±0.1 45.4±0.1 45.9±0.2 46.7±0.3 52.7
GLIP-T 48.9±0.2 50.5±0.1 50.4±0.3 51.2±0.2 55.1

GLIP-L 54.1±0.3 54.7±0.2 55.0±0.0 55.9±0.4 59.2

Table 7. Linear probing performance.

Model Prompt Probing
1 3 5 10 All

GLIP-T (A) 34.0±0.1 37.0±0.6 40.0±0.4 39.2±1.0 43.3
GLIP-T (B) 46.4±0.5 49.0±0.9 50.6±0.5 52.7±0.1 58.5
GLIP-T (C) 50.6±0.5 52.9±0.5 53.9±0.7 55.8±1.1 62.8
GLIP-T 49.9±0.7 53.7±1.6 55.5±0.6 56.6±0.3 62.4
GLIP-L 59.5±0.4 61.4±0.4 62.4±0.6 64.1±0.6 67.9

Table 8. Prompt tuning performance.

outperform them with ease. Detailed results for all datasets
are available in Table 9.

E.4. One Model for All Tasks

In Section 5.2, we conduct experiments with respect to
deployment efficiency: tuning the least amount of param-
eters for the best performance. For all models, we experi-
ment with the linear probing setting; for GLIP models, we
also experiment with the prompt tuning setting. For linear
probing, we try both the vanilla approach (simply tune the
classification and localization head) and the cosine scale ap-
proach [9]. Below we provide the implementation details.

For the vanilla linear probing, we train with a learning

https://public.roboflow.com/object-detection/pascal-voc-2012
https://public.roboflow.com/object-detection/aerial-maritime
https://public.roboflow.com/object-detection/aquarium
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rate of 1× 10−4, batch size of 4, and weight decay of 0.05.
For linear probing with the cosine scale, we use a scale of
20.0 per suggestions of Wang et al. [9], learning rate of 0.01,
batch size of 4, and weight decay of 0.05. For prompt tun-
ing, we train with a learning rate of 0.05, batch size of 4,
and weight decay of 0.25. We have conducted preliminary
searches for the hyper-parameters.

Results are present in Table 7 (linear probing) and Table
8 (prompt tuning). Comparing them with full-tuning results
(Table 6), we see prompt tuning performance of GLIP is
competitive, showing the deployment efficiency. Contrary
to Wang et al. [9] who report that linear probing can deliver
competitive performance for classical detection models, we
find that linear probing does not work well compared to full
tuning. We find that the reason could be the transfer datasets
(ODinW) in our case contain a lot of novel tasks and do-
mains, while experiments in Wang et al. focus on transfer-
ring to common domains (e.g., PascalVOC and COCO). In
Table 10, we report the per-dataset performance. We find
that for some common tasks or domains (e.g., PascalVOC
and Vehicles), linear probing of DyHead COCO performs
competitively with full fine-tuning but the gap is large for
some other tasks of a novel domain (e.g., AerialDrone).

E.5. All Results

We report the per-dataset performance under 0,1,3,5,10-
shot and full data as well as linear probing, prompt tuning,
and full-model tuning in Table 9, Table 10, and Table 11 (on
the next pages).



Model PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

GLIP-T (A) 47.7 9.8 16.8 60.5 1.6 13.7 48.5 44.4 20.4 52.4 25.3 0.8 32.3 28.8
GLIP-T (B) 50.6 4.9 19.4 71.6 0.5 21.8 29.7 47.0 21.4 56.0 47.4 3.6 57.1 33.2
GLIP-T (C) 51.6 8.1 22.6 71.1 49.1 69.4 65.6 51.5 29.3 49.9 42.7 17.0 49.2 44.4
GLIP-T 56.2 12.5 18.4 70.2 50.0 73.8 72.3 57.8 26.3 56.0 49.6 17.7 44.1 46.5
GLIP-L 61.7 7.1 26.9 75.0 45.5 49.0 62.8 63.3 68.9 57.3 68.6 25.7 66.0 52.1

Table 9. Zero-shot performance on 13 ODinW datasets.

Model Shot Tune PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

DyHead COCO 1 Linear 48.2±2.4 2.7±2.0 8.5±1.5 57.8±3.2 9.7±3.4 30.2±18.3 13.2±9.4 30.2±4.0 9.9±4.0 42.5±4.1 5.7±7.1 2.6±2.0 34.2±19.7 22.7±0.9

DyHead COCO 3 Linear 55.6±0.6 2.7±3.0 12.3±0.5 57.4±3.1 15.4±2.1 57.1±1.6 30.6±16.9 55.4±1.6 14.8±1.4 51.0±3.9 22.8±3.1 8.7±1.0 41.5±11.1 32.7±1.1

DyHead COCO 5 Linear 56.4±0.2 2.7±2.4 14.1±0.9 54.7±4.9 8.8±6.6 47.1±12.6 24.6±22.9 51.6±2.9 17.0±0.6 46.6±3.0 20.3±13.9 7.8±2.1 44.3±4.2 30.5±2.4

DyHead COCO 10 Linear 57.4±0.3 7.4±0.7 16.0±2.2 59.8±0.8 18.6±0.3 55.0±0.8 30.8±17.1 53.0±4.0 16.7±0.7 50.7±0.9 27.8±1.9 3.1±4.3 47.5±3.1 34.1±1.2

DyHead COCO All Linear 61.3 10.3 21.6 61.4 39.0 55.4 54.4 57.3 23.1 60.7 47.9 14.9 53.5 43.1

DyHead COCO 1 Full 31.7±3.1 14.3±2.4 13.1±2.0 63.6±1.4 40.9±7.0 67.0±3.6 34.6±12.1 45.9±3.8 10.8±5.0 34.0±3.3 12.0±10.4 6.1±1.3 40.9±7.4 31.9±3.3

DyHead COCO 3 Full 44.1±0.7 19.2±3.0 22.6±1.3 64.8±1.7 54.4±2.5 78.9±1.3 61.6±10.3 50.0±2.1 20.8±3.5 44.9±1.9 34.4±11.1 20.6±2.4 57.9±2.3 44.2±0.3

DyHead COCO 5 Full 44.9±1.5 22.2±3.0 31.7±1.0 65.2±1.5 55.6±3.7 78.7±3.9 50.1±13.7 48.7±4.8 22.8±3.3 52.0±1.2 39.8±6.7 20.9±1.5 48.0±2.8 44.7±1.7

DyHead COCO 10 Full 48.4±1.2 27.5±1.4 39.3±2.7 62.1±5.9 61.6±1.4 81.7±3.4 58.8±9.0 52.9±3.2 30.1±3.2 54.1±3.3 44.8±4.9 26.7±2.4 63.4±2.8 50.1±1.6

DyHead COCO All Full 60.1 27.6 53.1 76.5 79.4 86.1 69.3 55.2 44.0 61.5 70.6 56.6 81.0 63.2

DyHead O365 1 Linear 45.2±3.0 10.8±3.6 13.8±0.7 61.4±0.7 8.9±6.3 52.6±8.7 58.7±3.7 44.0±10.4 14.9±2.9 40.0±0.4 6.9±5.0 1.7±1.2 39.8±7.2 30.7±2.7

DyHead O365 3 Linear 54.6±0.4 12.4±3.0 22.3±1.5 64.0±2.4 10.5±6.8 53.6±10.6 49.1±16.3 60.5±1.6 20.6±2.2 51.3±2.3 25.5±0.9 8.2±1.1 38.9±12.6 36.3±2.7

DyHead O365 5 Linear 56.1±0.4 13.6±1.8 24.8±1.1 63.1±5.5 15.3±1.6 55.2±10.3 70.2±2.8 60.1±2.4 23.0±1.4 53.5±0.9 26.1±2.1 6.8±2.3 46.9±3.5 39.6±0.4

DyHead O365 10 Linear 57.5±0.3 8.2±3.0 28.2±0.8 65.4±3.2 17.5±0.6 68.0±0.8 49.8±17.3 60.3±2.1 22.9±1.0 56.4±0.8 28.0±2.2 7.6±0.9 50.3±0.5 40.0±2.2

DyHead O365 All Linear 63.0 18.9 33.7 69.2 36.3 70.9 52.4 66.7 26.6 60.6 48.2 16.1 64.6 48.2

DyHead O365 1 Full 25.8±3.0 16.5±1.8 15.9±2.7 55.7±6.0 44.0±3.6 66.9±3.9 54.2±5.7 50.7±7.7 14.1±3.6 33.0±11.0 11.0±6.5 8.2±4.1 43.2±10.0 33.8±3.5

DyHead O365 3 Full 40.4±1.0 20.5±4.0 26.5±1.3 57.9±2.0 53.9±2.5 76.5±2.3 62.6±13.3 52.5±5.0 22.4±1.7 47.4±2.0 30.1±6.9 19.7±1.5 57.0±2.3 43.6±1.0

DyHead O365 5 Full 43.5±1.0 25.3±1.8 35.8±0.5 63.0±1.0 56.2±3.9 76.8±5.9 62.5±8.7 46.6±3.1 28.8±2.2 51.2±2.2 38.7±4.1 21.0±1.4 53.4±5.2 46.4±1.1

DyHead O365 10 Full 46.6±0.3 29.0±2.8 41.7±1.0 65.2±2.5 62.5±0.8 85.4±2.2 67.9±4.5 47.9±2.2 28.6±5.0 53.8±1.0 39.2±4.9 27.9±2.3 64.1±2.6 50.8±1.3

DyHead O365 All Full 53.3 28.4 49.5 73.5 77.9 84.0 69.2 56.2 43.6 59.2 68.9 53.7 73.7 60.8

GLIP-T 1 Linear 57.1±0.0 15.0±0.3 21.2±0.3 68.3±1.6 59.5±0.1 72.7±0.3 72.3±0.0 65.2±0.2 26.5±0.1 57.6±0.1 54.1±0.4 18.2±0.1 47.3±0.2 48.9±0.1

GLIP-T 3 Linear 58.9±0.1 15.3±0.1 26.0±0.3 70.1±0.5 61.6±0.4 74.7±0.1 72.3±0.0 64.6±0.2 25.9±0.0 60.1±0.1 51.0±0.2 20.9±0.1 55.5±0.2 50.5±0.1

GLIP-T 5 Linear 59.0±0.1 15.5±0.4 27.6±0.9 69.7±0.8 61.8±0.1 75.1±0.4 72.3±0.0 62.8±0.5 25.4±0.4 62.5±0.6 51.4±0.3 19.6±0.6 52.7±1.2 50.4±0.2

GLIP-T 10 Linear 60.1±0.1 14.1±0.1 29.6±0.8 69.5±0.3 62.4±0.2 76.8±0.1 72.3±0.0 61.1±0.3 25.8±0.2 63.4±0.6 51.0±0.1 23.3±0.3 55.8±1.3 51.2±0.1

GLIP-T All Linear 65.5 14.1 36.5 68.2 67.2 76.6 70.2 63.8 29.1 65.5 63.5 29.9 66.5 55.1

GLIP-T 1 Prompt 54.4±0.9 15.2±1.4 32.5±1.0 68.0±3.2 60.0±0.7 75.8±1.2 72.3±0.0 54.5±3.9 24.1±3.0 59.2±0.9 57.4±0.6 18.9±1.8 56.9±2.7 49.9±0.6

GLIP-T 3 Prompt 56.8±0.8 18.9±3.6 37.6±1.6 72.4±0.5 62.8±1.3 85.4±2.8 64.5±4.6 69.1±1.8 22.0±0.9 62.7±1.1 56.1±0.6 25.9±0.7 63.8±4.8 53.7±1.3

GLIP-T 5 Prompt 58.5±0.5 18.2±0.1 41.0±1.2 71.8±2.4 65.7±0.7 87.5±2.2 72.3±0.0 60.6±2.2 31.4±4.2 61.0±1.8 54.4±0.6 32.6±1.4 66.3±2.8 55.5±0.5

GLIP-T 10 Prompt 59.7±0.7 19.8±1.6 44.8±0.9 72.1±2.0 65.9±0.6 87.4±1.1 72.3±0.0 57.5±1.2 30.0±1.4 62.1±1.4 57.8±0.9 33.5±0.1 73.1±1.4 56.6±0.2

GLIP-T All Prompt 66.4 27.6 50.9 70.6 73.3 88.1 67.7 64.0 40.3 65.4 68.3 50.7 78.5 62.4

GLIP-T 1 Full 54.8±2.0 18.4±1.0 33.8±1.1 70.1±2.9 64.2±1.8 83.7±3.0 70.8±2.1 56.2±1.8 22.9±0.2 56.6±0.5 59.9±0.4 18.9±1.3 54.5±2.7 51.1±0.1

GLIP-T 3 Full 58.1±0.5 22.9±1.3 40.8±0.9 65.7±1.6 66.0±0.2 84.7±0.5 65.7±2.8 62.6±1.4 27.2±2.7 61.9±1.8 60.7±0.2 27.1±1.2 70.4±2.5 54.9±0.2

GLIP-T 5 Full 59.5±0.4 23.8±0.9 43.6±1.4 68.7±1.3 66.1±0.6 85.4±0.4 72.3±0.0 62.1±2.0 27.3±1.2 61.0±1.8 62.7±1.6 34.5±0.5 66.6±2.3 56.4±0.4

GLIP-T 10 Full 59.1±1.3 26.3±1.1 46.3±1.6 67.3±1.5 67.1±0.7 87.8±0.5 72.3±0.0 57.7±1.7 34.6±1.7 65.4±1.4 61.6±1.0 39.3±1.0 74.7±2.3 58.4±0.2

GLIP-T All Full 62.3 31.2 52.5 70.8 78.7 88.1 75.6 61.4 51.4 65.3 71.2 58.7 76.7 64.9

GLIP-L 1 Linear 63.7±0.1 7.6±0.3 28.1±0.2 74.6±0.0 60.3±0.0 41.3±3.1 70.2±1.3 67.0±1.0 71.0±0.0 60.5±0.3 67.9±0.1 24.8±0.0 66.1±0.0 54.1±0.3

GLIP-L 3 Linear 64.8±0.1 8.5±0.1 33.7±0.2 74.3±0.2 64.1±0.2 37.0±0.2 69.3±0.0 66.6±1.9 71.2±0.3 63.2±0.3 68.0±0.1 24.8±0.0 65.9±0.4 54.7±0.2

GLIP-L 5 Linear 65.0±0.1 8.8±0.1 33.4±0.3 74.1±0.1 63.8±0.0 37.2±0.0 69.3±0.0 69.2±0.6 71.5±0.1 64.2±0.3 68.0±0.1 25.3±0.2 65.2±0.5 55.0±0.0

GLIP-L 10 Linear 65.2±0.3 11.5±2.3 35.1±0.4 74.0±0.0 64.7±0.0 38.0±1.0 71.7±1.7 66.7±0.3 72.5±0.3 65.6±1.1 67.9±0.0 25.8±0.2 67.2±0.3 55.8±0.4

GLIP-L All Linear 70.9 9.6 42.3 75.3 70.5 39.4 69.3 71.6 73.9 69.7 72.1 33.2 72.3 59.2

GLIP-L 1 Prompt 62.8±0.4 18.0±1.8 37.4±0.3 71.9±2.4 68.9±0.1 81.8±3.4 65.0±2.8 63.9±0.4 70.2±1.2 67.0±0.4 69.3±0.1 27.6±0.4 69.8±0.6 59.5±0.4

GLIP-L 3 Prompt 65.0±0.5 21.4±1.0 43.6±1.1 72.9±0.7 70.4±0.1 91.4±0.7 57.7±3.7 70.7±1.1 69.7±0.9 62.6±0.8 67.7±0.4 36.2±1.1 68.8±1.5 61.4±0.3

GLIP-L 5 Prompt 65.6±0.3 19.9±1.6 47.7±0.7 73.7±0.7 70.6±0.3 86.8±0.5 64.6±0.7 69.4±3.3 68.0±1.3 67.8±1.5 68.3±0.3 36.6±1.6 71.9±0.6 62.4±0.5

GLIP-L 10 Prompt 65.9±0.2 23.4±2.6 50.3±0.7 73.6±0.7 71.8±0.3 86.5±0.3 70.5±1.1 69.0±0.5 69.4±2.4 70.8±1.2 68.8±0.6 39.3±0.9 74.9±2.1 64.2±0.4

GLIP-L All Prompt 72.9 23.0 51.8 72.0 75.8 88.1 75.2 69.5 73.6 72.1 73.7 53.5 81.4 67.9±0.0

GLIP-L 1 Full 64.8±0.6 18.7±0.6 39.5±1.2 70.0±1.5 70.5±0.2 69.8±18.0 70.6±4.0 68.4±1.2 71.0±1.3 65.4±1.1 68.1±0.2 28.9±2.9 72.9±4.7 59.9±1.4

GLIP-L 3 Full 65.6±0.6 22.3±1.1 45.2±0.4 72.3±1.4 70.4±0.4 81.6±13.3 71.8±0.3 65.3±1.6 67.6±1.0 66.7±0.9 68.1±0.3 37.0±1.9 73.1±3.3 62.1±0.7

GLIP-L 5 Full 66.6±0.4 26.4±2.5 49.5±1.1 70.7±0.2 71.9±0.2 88.1±0.0 71.1±0.6 68.8±1.2 68.5±1.7 70.0±0.9 68.3±0.5 39.9±1.4 75.2±2.7 64.2±0.3

GLIP-L 10 Full 66.4±0.7 32.0±1.4 52.3±1.1 70.6±0.7 72.4±0.3 88.1±0.0 67.1±3.6 64.7±3.1 69.4±1.4 71.5±0.8 68.4±0.7 44.3±0.6 76.3±1.1 64.9±0.7

GLIP-L All Full 69.6 32.6 56.6 76.4 79.4 88.1 67.1 69.4 65.8 71.6 75.7 60.3 83.1 68.9

Table 10. Per-dataset performance of DyHead, GLIP-T, and GLIP-L. For PascalVOC, we report the mAP (IoU=0.50:0.95) using the COCO
evaluation script, to be consistent with other 12 datasets. “Linear” denotes linear probing. “Prompt” denotes prompt tuning. “Full” denotes
full-model tuning.



Model Shot Tune PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

GLIP-T (A) 1 Linear 52.9±0.1 13.2±0.3 21.3±3.2 65.0±2.0 23.1±0.3 11.4±0.1 57.3±4.6 53.5±0.7 16.8±0.0 54.1±0.1 34.5±0.2 5.8±0.1 40.8±0.4 34.6±0.6

GLIP-T (A) 3 Linear 54.6±0.2 13.4±0.1 28.3±0.1 65.4±1.0 26.0±0.3 11.4±0.0 50.8±0.7 58.8±0.3 15.8±0.7 56.1±1.0 34.4±0.9 6.5±0.0 45.8±0.3 35.9±0.2

GLIP-T (A) 5 Linear 55.3±0.1 14.0±0.3 28.5±0.1 65.2±1.3 28.4±0.2 11.7±0.0 63.9±0.0 59.2±0.8 16.9±0.2 56.6±0.2 36.9±0.5 9.3±0.0 43.2±0.3 37.6±0.1

GLIP-T (A) 10 Linear 56.8±0.2 14.3±0.2 29.0±0.1 67.0±0.1 29.2±0.1 11.6±0.1 64.5±0.3 59.7±0.7 16.6±0.7 56.9±0.0 33.2±1.5 7.4±0.1 46.2±0.8 37.9±0.2

GLIP-T (A) All Linear 62.0 15.1 32.2 66.1 40.9 12.1 66.9 60.5 22.5 62.4 49.8 17.1 65.7 44.1±0.0

GLIP-T (A) 1 Prompt 52.1±0.5 11.4±0.2 23.7±0.6 66.6±0.2 21.0±0.2 8.6±0.6 46.7±0.1 53.2±0.2 17.1±0.7 58.8±0.2 37.9±0.3 6.0±0.2 38.3±0.4 34.0±0.1

GLIP-T (A) 3 Prompt 54.9±0.1 13.4±2.5 25.9±0.2 65.9±0.5 22.7±0.1 33.6±1.4 46.6±0.0 53.7±0.4 18.5±0.8 58.2±0.6 38.1±0.5 6.2±0.1 42.4±0.2 36.9±0.5

GLIP-T (A) 5 Prompt 55.6±0.2 13.6±0.4 26.1±0.4 65.7±1.5 24.5±0.4 56.9±2.6 60.5±0.6 55.2±0.2 19.0±1.5 57.0±0.8 36.4±1.4 6.3±0.1 43.2±0.1 40.0±0.3

GLIP-T (A) 10 Prompt 56.6±0.1 15.8±0.8 26.2±0.1 68.0±0.6 24.4±0.1 41.2±12.5 60.3±0.9 55.9±0.4 19.6±1.6 57.5±1.0 36.1±0.3 6.0±0.1 42.4±1.2 39.2±0.9

GLIP-T (A) All Prompt 58.8 16.4 28.7 69.5 28.8 56.9 60.9 56.3 20.5 60.7 43.3 10.4 51.2 43.3

GLIP-T (A) 1 Full 44.8±0.7 16.9±1.2 28.0±1.0 64.6±1.6 54.1±1.5 64.1±12.0 55.8±0.6 55.6±1.8 21.6±0.9 53.4±1.3 43.8±0.9 10.9±1.2 52.3±4.7 43.5±1.2

GLIP-T (A) 3 Full 49.5±0.6 23.3±1.4 36.7±1.2 62.5±1.6 59.9±1.1 84.1±1.3 60.2±1.1 45.0±2.6 26.5±1.9 54.4±0.7 44.6±3.7 23.6±0.7 63.5±2.7 48.8±0.3

GLIP-T (A) 5 Full 50.8±0.5 25.3±0.7 41.2±0.8 62.4±0.9 60.4±0.9 86.4±2.3 59.2±8.5 44.7±2.5 28.2±0.7 55.6±2.0 51.7±0.8 27.0±0.8 62.1±6.0 50.4±0.6

GLIP-T (A) 10 Full 51.7±0.3 29.9±2.4 44.3±0.8 67.8±2.7 64.1±0.3 87.9±0.3 71.3±2.0 47.0±4.2 28.8±2.0 56.9±0.9 52.3±0.4 29.1±2.9 72.7±2.2 54.1±0.4

GLIP-T (A) All Full 55.1 35.3 50.9 78.0 78.0 86.3 75.2 54.8 44.1 61.4 69.3 57.3 80.6 63.6

GLIP-T (B) 1 Linear 54.0±0.1 6.6±0.0 17.2±0.0 73.3±0.7 23.7±0.7 63.6±0.2 51.5±0.0 51.8±0.2 25.5±0.1 56.4±0.1 45.2±1.0 6.7±0.1 56.5±0.4 40.9±0.2

GLIP-T (B) 3 Linear 54.9±0.0 6.6±0.0 25.2±0.2 73.1±0.3 29.3±0.4 63.3±0.1 55.3±3.6 56.1±0.4 24.8±0.4 57.5±0.6 44.8±0.1 6.9±0.2 58.5±0.3 42.8±0.3

GLIP-T (B) 5 Linear 56.0±0.5 6.6±0.0 25.7±0.3 72.9±0.8 28.4±0.1 62.7±0.2 70.5±1.2 56.1±0.3 25.4±0.5 58.6±0.2 46.8±0.5 9.4±0.9 52.8±0.4 44.0±0.2

GLIP-T (B) 10 Linear 57.3±0.2 6.6±0.0 27.8±0.9 75.8±0.5 30.1±0.2 62.8±0.4 67.8±1.3 53.2±0.2 24.0±0.1 61.5±1.4 43.9±0.3 7.6±0.1 58.4±0.5 44.4±0.3

GLIP-T (B) All Linear 64.3 6.6 35.6 73.9 44.9 62.8 73.6 63.9 34.2 65.0 61.8 20.5 66.6 51.8

GLIP-T (B) 1 Prompt 52.7±0.4 16.1±0.8 25.2±0.3 72.5±0.4 56.4±0.5 74.5±1.0 56.2±4.5 56.5±1.3 22.3±1.5 55.0±0.8 53.0±1.3 7.1±0.5 54.9±0.8 46.4±0.4

GLIP-T (B) 3 Prompt 54.7±0.9 16.6±0.6 33.8±0.3 76.7±1.0 55.9±0.6 77.2±4.2 59.5±5.6 55.7±2.7 24.2±1.2 56.9±0.7 51.3±1.4 18.4±0.6 56.6±1.7 49.0±0.7

GLIP-T (B) 5 Prompt 57.4±0.3 20.0±1.5 35.9±1.3 76.0±0.4 58.2±0.8 78.7±4.2 61.4±1.2 56.5±1.5 27.2±0.8 55.0±4.7 53.6±1.8 21.4±0.3 56.4±1.0 50.6±0.4

GLIP-T (B) 10 Prompt 57.8±0.6 22.5±0.7 39.1±0.8 74.7±1.3 58.8±0.8 85.6±1.3 59.6±0.0 56.7±1.5 32.4±0.8 59.3±1.8 52.4±0.5 20.7±1.0 66.1±1.8 52.8±0.1

GLIP-T (B) All Prompt 64.6 18.2 47.3 71.3 70.1 85.6 59.6 65.0 37.9 61.3 64.6 39.0 76.4 58.5

GLIP-T (B) 1 Full 48.4±1.9 16.6±0.6 31.8±1.7 70.9±1.4 55.3±0.4 78.8±2.7 66.3±1.6 48.1±6.9 23.3±1.3 57.0±0.8 52.9±0.6 12.9±0.4 61.0±1.8 48.0±0.7

GLIP-T (B) 3 Full 51.7±0.8 23.4±2.6 37.2±1.0 69.5±1.0 59.6±0.7 85.4±0.4 62.4±1.1 56.5±1.5 30.0±1.0 57.6±1.2 54.7±1.6 24.5±1.3 64.3±1.8 52.1±0.4

GLIP-T (B) 5 Full 52.9±0.7 27.4±0.7 41.5±0.6 68.4±1.4 61.9±0.5 81.0±3.3 69.3±3.5 61.2±2.6 26.9±1.9 58.1±0.3 57.4±1.7 28.3±1.5 57.3±2.4 53.2±0.7

GLIP-T (B) 10 Full 53.9±1.1 28.2±1.3 43.1±0.8 69.0±2.1 65.4±1.4 87.3±0.6 65.1±2.1 52.3±3.2 30.6±0.7 60.2±2.2 53.0±2.5 34.2±1.9 71.8±2.3 54.9±0.6

GLIP-T (B) All Full 56.9 28.7 54.0 68.3 78.4 88.1 72.7 57.7 41.2 63.8 69.0 59.8 75.8 62.7

GLIP-T (C) 1 Linear 57.0±0.2 6.4±0.1 21.1±0.4 74.2±0.0 60.9±0.1 24.6±0.1 64.0±0.0 52.0±0.1 21.2±0.1 55.6±0.2 50.9±0.3 14.6±0.0 68.7±0.6 43.9±0.1

GLIP-T (C) 3 Linear 59.0±0.1 8.2±0.4 28.4±0.2 74.2±0.0 61.5±0.1 24.2±0.3 64.0±0.0 57.8±0.6 20.9±0.1 57.1±0.5 49.3±0.2 15.7±0.1 69.5±0.5 45.4±0.0

GLIP-T (C) 5 Linear 59.6±0.0 6.5±0.1 29.9±0.6 74.1±1.5 61.9±0.0 24.9±0.1 64.9±1.3 52.0±0.3 21.7±0.4 63.4±0.3 48.5±1.2 22.2±0.3 67.6±0.7 45.9±0.1

GLIP-T (C) 10 Linear 60.8±0.2 7.6±0.5 31.6±0.1 74.3±1.2 63.2±0.1 25.3±0.2 65.8±0.6 58.2±2.8 22.6±0.3 62.6±0.3 46.0±0.1 20.0±0.4 69.4±1.1 46.7±0.2

GLIP-T (C) All Linear 66.4 8.2 38.2 71.0 68.5 37.7 64.0 59.7 32.5 66.1 62.4 32.4 78.2 52.7

GLIP-T (C) 1 Prompt 52.6±1.0 13.3±0.8 30.8±1.5 70.4±0.9 60.3±0.4 74.5±3.1 71.1±1.4 58.8±0.2 24.8±1.4 58.4±1.1 51.8±1.5 22.8±1.1 68.2±0.1 50.6±0.4

GLIP-T (C) 3 Prompt 57.4±0.2 18.9±1.3 36.2±1.2 74.0±2.6 64.0±1.1 84.6±0.7 64.1±3.7 59.2±3.8 23.0±2.6 61.2±1.4 53.1±1.7 27.0±1.1 65.5±1.4 52.9±0.4

GLIP-T (C) 5 Prompt 58.8±1.0 20.2±0.7 41.3±1.3 73.2±1.4 64.6±1.8 82.3±2.7 69.1±5.1 58.0±2.7 27.2±4.0 59.2±1.9 53.7±0.5 26.2±2.3 66.5±2.5 53.9±0.5

GLIP-T (C) 10 Prompt 59.8±0.6 21.9±3.1 42.8±0.7 73.1±0.9 66.9±0.5 85.7±3.6 69.9±2.1 58.5±1.8 25.7±1.4 61.3±1.1 54.1±0.4 30.1±3.7 74.9±0.2 55.8±0.9

GLIP-T (C) All Prompt 67.3 24.8 49.0 72.2 73.2 82.5 72.2 61.1 42.6 64.5 68.8 51.8 80.7 62.4

GLIP-T (C) 1 Full 52.5±0.4 16.2±1.2 34.5±1.3 68.9±1.1 64.2±1.2 80.9±1.3 65.9±3.9 51.9±1.2 22.3±3.1 56.3±1.3 55.7±1.2 20.8±1.3 55.0±4.2 49.6±0.2

GLIP-T (C) 3 Full 57.1±0.4 23.9±0.2 39.2±0.1 68.2±0.7 65.9±0.6 85.4±0.3 68.3±0.2 52.0±2.9 30.8±1.8 59.0±1.3 54.9±1.1 29.5±3.3 64.8±3.0 53.8±0.1

GLIP-T (C) 5 Full 57.6±0.7 27.6±1.1 43.6±0.3 67.8±2.0 66.4±0.4 84.2±0.4 67.6±2.6 55.4±2.7 27.1±5.2 60.4±2.7 59.8±0.8 37.8±1.1 57.0±6.3 54.8±0.8

GLIP-T (C) 10 Full 57.1±0.4 31.9±1.3 47.9±1.0 66.7±4.1 67.7±0.4 86.1±2.8 63.2±3.4 52.2±4.3 35.5±1.1 61.2±0.7 58.6±0.9 38.9±1.6 75.8±3.6 57.1±0.9

GLIP-T (C) All Full 62.3 29.1 53.8 72.7 78.4 85.8 68.6 60.7 43.6 65.9 72.2 55.9 81.1 63.9

Table 11. Per-dataset performance of GLIP-T (A, B, and C). For PascalVOC, we report the mAP (IoU=0.50:0.95) using the COCO
evaluation script, to be consistent with other 12 datasets. “Linear” denotes linear probing. “Prompt” denotes prompt tuning. “Full” denotes
full-model tuning.
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