Appendix of Grounded Language-Image Pre-training

This appendix is organized as follows.

* In Section A, we provide more visualizations of our
model’s grounding predictions on the Conceptual Cap-
tion 12M dataset [1].

¢ In Section B (referred by Section 3.1), we discuss the
equivalence between detection and grounding.

e In Section C.1 (referred by Section 4), we introduce
the pre-training details of the models we use in Section
4.,

e In Section C.2 (referred by Section 4), we introduce
the evaluation details of experiments on COCO, LVIS,
and Flickr30K.

¢ In Section C.3 (referred by Section 4), we discuss the
difference between the public image-text data (Google
Conceptual Captions,SBU) and the image-text data we
collected.

e In Section D, we provide a detailed analysis on the
computational cost and performance effect of the
language-aware deep fusion.

¢ In Section E.1 (referred by Section 5), we introduce the
13 datasets in Object Detection in the Wild (ODinW).

* In Section E.2 (referred by Section 5), we detail the
manual prompt design.

¢ In Section E.3 (referred by Section 5.1), we give the
details for the data efficiency experiments.

* In Section E.4 (referred by Section 5.3), we give the
details for the linear probing and prompt tuning exper-
iments.

e In Section E.5, we present per-dataset results for all
experiments in Section 5.

A. Visualization

We provide more visualizations of the predictions from
our teacher model. Even given noise image-text pairs, our
model is still capable of grounding semantic-rich phrases
accurately.
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Figure 1. Predictions from the teacher model on 6 examples from
Conceptual Captions 12M. Phrases and corresponding boxes are

matched with the same colors.



B. Equivalence Discussion between Detection
and Grounding

In Section 3.1 of the main paper, we discussed the equiv-
alence between detection and grounding. We corroborate
the discussion with empirical experiments.

When all object categories fit into a single prompt. We
first confirm that when all categories fit into one prompt,
our grounding formulation is equivalent to classical object
detection. We conduct the experiments on COCO [6]. We
first choose the SoTA detection model Dynamic Head (Dy-
Head) [2] based on the Swin-Tiny Transformer backbone
[7] as the base object detection mode. We then transform
this model into a grounding model as described in Section
3.1: we concatenate the 80 class names with “. ” into one
prompt and replace DyHead’s classification loss with our
grounding loss. We use BERT (base-uncased) [3] to encode
the text prompt. When concatenating the class names, we
follow a fixed order.

We train the two models with the exact same hyperpa-
rameters as in [2]: we train with the standard 2x training
configurations [4]. We train with batch size 32 and learning
rate 1 x 10~* (for the model with grounding reformulation,
we use 1 x 107° for the BERT text encoder). We decay the
learning rate at 67% and 89% of the total training steps.

The two models achieve the same performance on
COCO 2017val: 49.4 AP. Their results are close to the 49.7
reported in the last row of Table 6 of Dai et al. [2] (the
small difference is presumably due to the implementation
difference). Thus, we conclude that when all categories can
fit into a single prompt, grounding and detection tasks are
equivalent.

When not all object categories can fit into a single
prompt. The text encoder for the prompt has a limit on
the input sentence length. For example, BERT can only
encode sentences containing at most 512 tokens. In our im-
plementation, to reduce computational costs, we limit the
input length to 256. Thus, for certain datasets with a large
vocabulary (e.g., Objects365 [8] has 365 object categories),
we cannot fit all category names into one prompt. As a prac-
tical solution, we can split the category names into multiple
prompts, during both training time and inference time. We

coco
Zero-Shot  Fine-Tune

LVIS minival Flickr30K val
APr APc APf AP | R@l R@5 R@I0

0365,GoldG,Cap4M ‘ 463 54.9 ‘zo.s 214 310 26.0 ‘ 857 954 969

Pre-Train Data

0365,GoldG,CC3M,SBU 46.6 552 20.1 21.3 31.1 259 | 853 957 972

Table 1. Comparison between public data and data crawled by us.

find that this incurs minor performance drop. For exam-
ple, in Table 2 in the main paper, DyHead-T pre-trained
on Objects365 achieves 43.6 on COCO zero-shot, while
GLIP-T (A) (the grounding reformulated model of DyHead)
achieves 42.9 on COCO.

C. Transfer to Established Benchmarks

We introduce the implementation details of the models
used in Section 4 and discuss the difference between public
image-text data and the data crawled by us.

C.1. Pre-training Details

In Section 4, we introduced GLIP-T (A), GLIP-T (B),
GLIP-T (C), GLIP-T, and GLIP-L. We introduce the im-
plementation details in the following. We pre-train models
based on Swin-Tiny models with 32 GPUs and a batch size
of 64, and models based on Swin-Large with 64 GPUs and
a batch size of 64. We use a base learning rate of 1 x 10~°
for the language backbone and 1 x 10~ for all other param-
eters. The learning rate is stepped down by a factor of 0.1
at the 67% and 89% of the total training steps. We decay
the learning rate when the zero-shot performance on COCO
saturates. The max input length is 256 tokens for all models.

Prompt design for detection data. As noted in Section
B, when we pre-train on datasets such as Objects365, we
cannot fit all categories into one prompt. During pre-
training, we randomly down-sample the categories and keep
only the down-sampled categories in the prompt. We ran-
domly shuffle the categories’ order in the prompt. If a pos-
itive category is discarded and not kept in the prompt after
down-sampling, we will also drop its corresponding boxes
from the box labels.

The down-sampling is done randomly on the fly for each
training example and serves as data augmentation. Specif-
ically, for an example, we denote the positive classes that
appear in the image as Cj, and the rest negative classes as
Cheg- With a probability of 0.05, we sample one positive
category from Cpos; With a probability of 0.05, we sample
one negative category from Cyeg; With a probability of 0.5,
we keep all of Cp,s and sample from Cp, till we have 85
categories in the prompt. For the rest of the time, we uni-
formly choose a number [V from 1-85 and put IV categories
in the prompt; we always prioritize positive categories; but
with a probability of 0.2, we might drop some positive cat-
egories from the prompt.



Augmentation for image-text data with generated boxes.
When we pre-train the model on image-text data with gen-
erated boxes, we find it beneficial to increase the difficulty.
We mix a few negative captions (that are from other ex-
amples and do not match with the image) with the positive
caption (that is matched to the image) to form a longer text
input. The model is trained to predict boxes and align them
to the correct phrases in the positive caption. The model
would need to first identify the positive caption among a
few potential captions and then align the box to the correct
phrases in the positive caption. This makes the grounding
task more challenging and help the model learn a semantic-
rich representation during pre-training. This augmentation
is also done randomly on the fly. For each training exam-
ple, with a probability of 0.3, we conduct such augmenta-
tion and mix in 19 negative captions; with a probability of
0.3, we mix in a random number (uniformly drawn between
1-19) of negative captions; for the rest of the time, we do
not conduct such augmentation.

C.2. Evaluation Details

For fine-tuning on COCO, we use a base learning rate of
1 x 1075 for pre-trained models.

For zero-shot evaluation on LVIS, since LVIS has over
1,000 categories and they cannot be fit into one text prompt,
we segment them into multiple chunks, fitting 40 categories
into one prompt and query the model multiple times with
the different prompts. We find that models tend to overfit
on LVIS during the course of pre-training so we monitor
the performance on minival for all models and report the
results with the best checkpoints.

For zero-shot evaluation on Flickr30K, models may also
overfit during the course of pre-training so we monitor the
performance on the validation set for all models and report
the results with the best checkpoints.

C.3. Difference Between Public Data and Web-
Crawled Data

For GLIP-T pre-trained with image-text data, as men-
tioned in Section 4, we train two versions, one with pub-
lic data (CC3M,SBU) and another with data we crawled
(Cap4M). Here we provide a comparison between the two
models in Table 1.

The two models differ only slightly, with the Cap4M ver-
sion better on LVIS while the CC3M+SBU version better on
COCO. We conjecture that this is potentially because the
public data is more extensively screened and contains more
common categories and less rare concepts. Thus it performs
slightly better on COCO while lags slightly on LVIS.

Train (V100)

Model ‘Fusmn Speed  Memory

Inference (P100)
Speed  Memory

GLIP-T X 484FPS 1.0GB 2.79FPS 11.5GB
v 252FPS 24GB 1.62FPS 16.0 GB
GLIP-L X 0.54 FPS 4.8GB 1.27FPS 19.7 GB
4 0.32FPS 7.7GB 0.88 FPS 23.4 GB

Table 2. Computational cost of language-aware deep fusion. For
speed, we report FPS, which is the number of images processed
per second per GPU (higher is better). For memory consumption,
we report the GPU memory used in GB (lower is better). Deep
fusion brings less than 1x additional computational cost.

D. Computation Cost and Performance Analy-
sis of Deep Fusion

In this section, we provide a more detailed ablation
on the computational cost and performance effect of the
language-aware deep fusion proposed in Section 3.

D.1. Computational Cost

We test the additional computational cost of the
language-aware deep fusion for both GLIP-T and GLIP-L.
For inference, we test on a P100 GPU with batch size 1.
Note that for inference with GLIP without deep fusion, we
could cache the language embeddings of the prompts; thus
the inference time of GLIP without deep fusion is equiva-
lent to that of DyHead [2].

For training, we test on a standard DGX-2 machine with
16 V100 GPUs (we test under the multi-GPU setting as
it mimics the actual training environment): for GLIP-T
models, we use 2 images per batch and for GLIP-L mod-
els, we use 1 images per batch. As the fusion module in-
vovles multi-head attention over a large number of input
elements, we turn on gradient checkpointing' for the deep
fusion module, which increases training time but reduces
GPU memory consumption.

Table 2 shows that the language-aware deep fusion
brings less than 1x additional computational cost overall.

D.2. Performance

We provide an analysis on the effect of language-aware
deep fusion when different kinds of pre-training data are
used. We pre-train four variants of GLIP-T and show the
results In Table 3. Deep fusion is beneficial for testing
on 1) common categories (i.e., COCO); 2) grounding tasks
(i.e., Flickr30K), and 3) low-resource transfer to real-world
downstream tasks (i.e., ODinW).

However, on LVIS, the effect of deep fusion seems un-
clear: when only detection data are used, deep fusion seems

'https : / / pytorch .
checkpoint.html
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Deep Fusion Data COCO LVIS minival Flickr30K val ODinW
p s Zero-Shot Fine-Tune | APr APc APf AP R@l R@5 R@10 | 0-Shot 1-Shot 3-Shot 5-Shot 10-Shot Full-Shot
X 0365 429 529 142 139 234 185 | 464 632 669 28.7 43.5 48.8 50.4 54.1 63.6
4 0365 449 53.8 13.5 12.8 222 178 414 577 610 33.2 48.0 52.0 53.2 54.9 62.7
X 0365,GoldG 41.6 529 15.8 23.0 30.8 26.1 824 947  96.6 355 47.2 51.9 53.8 54.3 65.1
4 0365,GoldG 46.7 55.1 17.7 195 31.0 249 848 949 963 44.4 49.6 53.8 54.8 57.2 63.9

Table 3. Language-aware fusion benefits most tasks. We reported the full-model tuning performance for ODinW few-shot results. For
models trained with only 0365, performance on Flickr30K (grey numbers) is significantly worse because the models are not trained to

ground natural language captions.

to degrades performance (row 1 v.s. row 2); when ground-
ing data are present, deep fusion degrades common category
performance but improves rare category performance. Our
assumption is that when GLIP is only trained with detection
data (e.g., O365), the language model could “overfit” to the
categories in O365 and does not generalize to novel cate-
gories well (i.e., outputs out-of-distribution text representa-
tion). The deep fusion could “amplify” such overfit as the
visual representation is conditioned on the language model.
Thus, when tested on prompts containing novel categories
(e.g., LVIS), deep fusion could degrade performance. When
grounding data are used, such overfit could be mitigated.

E. Object Detection in the Wild

In this section, we provide the details and additional re-
sults for the experiments in Section 5.

E.1. Dataset Details

We use 13 datasets from Roboflow?. Roboflow hosts
over 30 datasets and we exclude datasets that are too chal-
lenging (e.g., detecting different kinds of chess pieces) or
impossible to solve without specific domain knowledge
(e.g., understanding sign language).

We provide the details of the 13 datasets we use in Table
4. We include the PASCAL VOC 2012 dataset as a refer-
ence dataset, as public baselines have been established on
this dataset. For PascalVOC, we follow the convention and
report on validation set. For Pistols, there are no official
validation or test sets so we split the dataset ourselves.

E.2. Manual Prompt Tuning

As discussed in Section 5, we find it beneficial to man-
ually design some prompts to provide language guidance.
We provide the prompts we use in Table 5. We design
the prompts for 6 datasets. Since some prompts are sen-
tences, we only apply these prompts for models trained
with grounding data (GLIP-T (C), GLIP-T, and GLIP-L).
For GLIP-T (A) and GLIP-T (B), we find it beneficial to
use prompts for the Rabbits and Mushrooms datasets, as the

https :
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Figure 2. Per dataset zero-shot performance. The first 3 datasets
contain novel categories not present in the Objects365 vocabulary
while the last 2 datasets’ categories are covered by Obj365 data.
Grounding data bring significant benefit to novel categories.

prompts there are just single word or short phrases. Overall,
using prompts improves AP without any model re-training
(e.g., the AP improves from 22.1 to 50.0 for EgoHands).

E.3. Data Efficiency

We provide details for the experiments in Section 5.1.
We train with batch size 4, learning rate 1 x 10~* (for the
model with grounding reformulation, we use 1 x 10~° for
the BERT text encoder), and weight decay of 0.05. We do
not find that increasing batch size improves performance
significantly. For computational reasons, we use a batch
size of 4. Following convention, we freeze the bottom 2
layers of the backbone during fine-tuning. We monitor the
performance on validation and decay the learning rate by
0.1 when the validation performance plateaus. In X-shot
settings, we randomly sample the dataset such that there are
at least X examples per category [5]. We change the ran-
dom seeds (and thus change the sampled data) and conduct
3 independent runs for each X-shot experiment. We pro-
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Dataset Objects of Interest ‘ Train/Val/Test

PascalVOC Common objects (Pascal VOC 2012) 13690/3422/- https://public.robo

AerialDrone Boats, cars, etc. from drone images 52/15/7 https://publ

Aquarium Penguins, starfish, etc. in an aquarium 448/127/63 https://public.robo m/object-detec
Rabbits Cottontail rabbits 1980/19/10 https://public.roboflow.com/o tion/cottontail-r
EgoHands Hands in ego-centric images 3840/480/480 .com/object-detection/k
Mushrooms Two kinds of mushrooms 41/5/5

Packages Delivery packages 19/4/3

Raccoon Raccoon 150/29/17

Shellfish Shrimp, lobster, and crab 406/116/58

Vehicles Car, bus, motorcycle, truck, and ambulance 878/250/126

Pistols Pistol 2377297297

Pothole Potholes on the road 465/133/67

Thermal Dogs and people in thermal images 142/41/20

Table 4. 13 ODinW dataset statistics. We summarize the objects of interest for each dataset and report the image number of each split.

Dataset ‘ Original Prompt AP ‘ Manually Designed Prompts AP
penguin penguin, which is black and white
Aquarium puffin 17.7 puffin with orange beaks 18.4
stingray stingray which is flat and round
Rabbits ‘ Cottontail-Rabbits  68.0 rabbit 70.2
EgoHands ‘ hand 22.1 hand of a person 50.0

Mushrooms ‘ Cow. Chanterelle 13.6 | flat mushroom. yellow mushroom 73.8

Packages ‘ package 50.0 there is a package on the porch ~ 72.3

Pothole ‘ pothole 17.8 ‘ there are some holes on the road  17.7

Table 5. Manually designed prompts for 6 datasets. Words in ifalic
are the objects of interest. The prompts either provide attributes,
specify the category name in more common words, or provide lan-
guage contexts. They can improve AP (CLIP-T) without any an-
notation or model re-training. Specifically for Pothole, although
the changed prompt does not improve the AP of CLIP-T, we find
it effective for CLIP-T (C) so we still apply the prompt.

Full Tuning
Model ‘ Zero Shot ‘ 1 3 5 10 All
DyHead—T COCOo - 31.9+41 442104 447421 50.1+20 63.2
DyHead—T 0365 - 33.8443 43.6412 464114 50.8+16 60.8
GLIP-T (A) 28.7 43.541s 48.8104 50.4+07 S54.1:0s 63.6
GLIP-T (B) 332 48.0x0s 52.0x04 532400 54.9107 62.7
GLIP-T (C) 44.4 49.6405 53.8+02 54.8+10 57.2+11 639
GLIP-T 46.5 S51.1x01 549105 56.44+05s 584102 649
GLIP-L | 521 ] 599+ 62.0s0s 642505 649105 68.9

Table 6. Zero-shot and full fine-tuning performance. GLIP models
exhibit superior data efficiency.

vide two DyHead-T variants as baselines, one trained on
COCO and one trained on Objects365. We report the full
zero-shot results in Table 9 and few-shot results in Table 6.

We further plot the zero-shot performance of GLIP vari-
ants on 5 different datasets in Figure 2. We find that the
introduction of grounding data brings significant improve-
ment on certain tasks that test novel concepts, e.g., on Pot-
hole and EgoHands, models without grounding data (A&B)
performs terribly, while models with grounding data (C)

Linear Probing
1 3 5 10 All

DyHead-T coco 227+ 327414 305420 34.1:114 43.1
DyHead-T COCO-Cosine 21.8444 30.6+22 333112 35.5+12 435
DyHead—T 0365 30.7+35 36.2+33 39.6x04 40.0:27 482
DyHead-T 0365-Cosine 252426 37.6x0s 38.9+07 41.5:05 49.4

Model

GLIP-T (A) 34.6+07 359x02 37.6401 37.9+0> 44.1
GLIP-T (B) 409405 42.8+0s 44.0402 444105 51.8
GLIP—T(C) 439101 454101 459102 46.7105 527
GLIP-T 48.9+02 50.5+01 504105 51.2402 55.1
GLIP-L ‘54.1i0.‘4 54.7+02 55.0400 55.9+04 59.2

Table 7. Linear probing performance.

Prompt Probing
Model 1 3 5 10 All
GLIP-T (A) 34.0+01 37.0x06 40.0x04 39.2+10 43.3
GLIP-T (B) | 46.4+05 49.0x09 50.6+05 52. 701 58.5
GLIP-T (C) | 50.6+05 52.9+05s 53.9+07 55.8+11 62.8
GLIP-T 499407 537116 55.5+06 56.6+05 62.4
GLIP-L 59.5404 614104 624406 64.1106 67.9

Table 8. Prompt tuning performance.

outperform them with ease. Detailed results for all datasets
are available in Table 9.

E.4. One Model for All Tasks

In Section 5.2, we conduct experiments with respect to
deployment efficiency: tuning the least amount of param-
eters for the best performance. For all models, we experi-
ment with the linear probing setting; for GLIP models, we
also experiment with the prompt tuning setting. For linear
probing, we try both the vanilla approach (simply tune the
classification and localization head) and the cosine scale ap-
proach [9]. Below we provide the implementation details.

For the vanilla linear probing, we train with a learning
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rate of 1 x 10~4, batch size of 4, and weight decay of 0.05.
For linear probing with the cosine scale, we use a scale of
20.0 per suggestions of Wang et al. [9], learning rate of 0.01,
batch size of 4, and weight decay of 0.05. For prompt tun-
ing, we train with a learning rate of 0.05, batch size of 4,
and weight decay of 0.25. We have conducted preliminary
searches for the hyper-parameters.

Results are present in Table 7 (linear probing) and Table
8 (prompt tuning). Comparing them with full-tuning results
(Table 6), we see prompt tuning performance of GLIP is
competitive, showing the deployment efficiency. Contrary
to Wang et al. [9] who report that linear probing can deliver
competitive performance for classical detection models, we
find that linear probing does not work well compared to full
tuning. We find that the reason could be the transfer datasets
(ODinW) in our case contain a lot of novel tasks and do-
mains, while experiments in Wang et al. focus on transfer-
ring to common domains (e.g., PascalVOC and COCO). In
Table 10, we report the per-dataset performance. We find
that for some common tasks or domains (e.g., PascalVOC
and Vehicles), linear probing of DyHead COCO performs
competitively with full fine-tuning but the gap is large for
some other tasks of a novel domain (e.g., AerialDrone).

E.S. All Results

We report the per-dataset performance under 0,1,3,5,10-
shot and full data as well as linear probing, prompt tuning,
and full-model tuning in Table 9, Table 10, and Table 11 (on
the next pages).



Model ‘PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

GLIP-T (A) | 47.7 9.8 16.8 60.5 1.6 13.7 48.5 44.4 20.4 52.4 253 0.8 32.3 28.8
GLIP-T (B) | 50.6 4.9 19.4 71.6 0.5 21.8 29.7 47.0 21.4 56.0 474 3.6 57.1 332
GLIP-T (C) | 51.6 8.1 22.6 71.1 49.1 69.4 65.6 51.5 29.3 49.9 427 17.0 49.2 44.4
GLIP-T 56.2 12.5 18.4 70.2 50.0 73.8 72.3 57.8 26.3 56.0 49.6 177 44.1 46.5
GLIP-L 61.7 7.1 26.9 75.0 455 49.0 62.8 63.3 68.9 57.3 68.6 257 66.0 52.1

Table 9. Zero-shot performance on 13 ODinW datasets.

Model Shot  Tune ‘ PascalVOC  AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

DyHead coco 1 Linear 482424 2.7+20 8.5:1s 578432 9.7434 302183 1321004 302140 99140 42.5+41  5.7:m 2.6:20  34.2:197 227100
DyHead coco 3 Linear 55.6+06 2.7+30 12.3 405 57451 15440 57.1+16 30.6+160 554416 14.8+14 51.0430 228431 8.7x10  41.5:m1 327+
DyHead coco 5 Linear 56.4 102 27524 14.1+00 54.7+40 88166 47 1+16 246425 51.6+20 17.0x06 46.6+30 203110 7.8:21 443102 30.5:04
DyHead coco 10  Linear 57403 7. 4x07 16.0+22 59.8+05  18.6x03 55.008 308411 53.0xa0  16.7x07  50.7x00 27.8x15 3.lxas  47.5:n 341z
DyHead coco  All  Linear 61.3 10.3 21.6 61.4 39.0 55.4 54.4 57.3 23.1 60.7 479 14.9 535 43.1

DyHead coco 1 Full 31. 745 143424 13.1420  63.6:14 40.9:70 67.0+36 346421 459435 108450 34.0435  12.01104 6.1415  409:74  31.943s
DyHead coco 3 Full 44.1+07 19.2:430 22.6+13 64.8+17 54.4425 78.9+15 61.6:105  50.0:21  20.8+ss  44.9:10  344xns 20.6:24 57.9:25 442105
DyHead coco 5 Full 449215 222430 317410 65.2+15 55.6+37 78.7 x50 50147 48.7+as 228135 52.0+12 39.8167 209415 48.0:2s 447117
DyHead coco 10 Full 48412 27.5+14 39.3+27 62.1+59 61.6+14 81.7+34 588400 529132 30.1is2 S54.1sss 448140 26.7:24 634125 50.1:16
DyHead coco  All Full 60.1 27.6 53.1 76.5 79.4 86.1 69.3 55.2 44.0 61.5 70.6 56.6 81.0 63.2

DyHead o365 1 Linear 452430 10.8:436 13.8.407 61.4507 89163 52.6:87 58.7+37  44.0x104 149120 40.0:04  6.9zs50 17512 39.8272 30.7:127
DyHead 0365 3 Linear 54.6=04 12.4:550 22315 64.0:24  10.5:68 53.6+106 49.11165 605516 20.6+22 513125 25.5:00 8.2:u 38.9:126 36.3+27
DyHead o365 5 Linear 56.1+04 13.6+15 24841 63.1+s5 15.3+16 55.2+103 702425 60.1:24  23.0x14 535100 26.1:21 6.8:23 469135 39.6104
DyHead o365 10 Linear 57.5+03 8.2+30 28.2:+08 654132 17.5x06 68.0=0s 4982175 603121 229110 564205 28.0:22  7.6z00 50305 40.0:22
DyHead 036s ~ All  Linear 63.0 18.9 33.7 69.2 36.3 70.9 52.4 66.7 26.6 60.6 482 16.1 64.6 48.2

DyHead o365 1 Full 258430 16.5415 159427 557460 44.0436 66.9.430 542457 507177 141136 33.0:u0 11.046s  8.2+41 4321100 33.8:1ss
DyHead o365 3 Full 404410 20.5:+40 26.5+13 57.9:20 539125 76.5+23 62.6:155  52.5+s0 224417 4741520 30.1se0 197115 57.0:23  43.6110
DyHead o365 5 Full 435410 253418 358405 63.0+10 56.2439 76.8+50 625457 46.6+31 288122 512420 387141 21.0414 53452 464114
DyHead o365 10 Full 46.6=03 29.0+25 41.7x10 652425 62.5+08 85.4+22 679445 479122 28.6xs0 53.8+10 392140 279425 64.1:26  50.8x13
DyHead o365 All Full 533 28.4 49.5 735 719 84.0 69.2 56.2 43.6 59.2 68.9 53.7 73.7 60.8

GLIP-T 1 Linear 571400 15.0+03 212403 68.3+16 59.5+01 72703 723400 652402 26.5+01 57.6401 54.1t0s 182401 473102 48910
GLIP-T 3 Linear 58.9+01 15.3+01 26.0=03 70.1+05 61.6+04 74.7 01 723400  64.6+02 259100 60.1x01  51.0+02 209401 55.5:02 50.5+01
GLIP-T 5 Linear 59.0+0. 15.5+04 27.6:+00 69.7+05  61.8+01 75.1x04 723400  62.8+0s 254104 625106 S51.4x0s 19.6406 527112 50.4z02
GLIP-T 10 Linear 60.1 0. 14.1+0: 29.6:+0s 69.5+05  62.4102 76.8x01 723100 6l.1x0s 258102 634106 51.0x01 233405 558115 51201
GLIP-T All  Linear 65.5 14.1 36.5 68.2 67.2 76.6 70.2 63.8 29.1 65.5 63.5 29.9 66.5 55.1

GLIP-T 1 Prompt | 54.4100 152414 325410 68.0432 60.0+07 75.8+412 723500 545130 241130 592100 574106 189115 56.9:27 499106
GLIP-T 3 Prompt | 56.8:0s 18.9:416 376416 724105 62.8413 85.4428 64.5:106  69.1x1s 220100 62.7:11 56.1:06  25.9+07 63.8:as  53.7115
GLIP-T 5 Prompt 58.5z0s 18.2:01 41.0+12 71.8+24  65.7+07 87.5:22 72.3x00  60.6:22  31.4+s2 61.0:1s  54.4:06  32.6414 66.3:25  55.5:0s
GLIP-T 10 Prompt | 59.7+07 19.8:+16 44.8+00 721420 659106 87411 723400 57.5+12 30.0+14  62.1+14  57.8+00 33.5+01 73.1:14  56.6:02
GLIP-T All  Prompt | 66.4 27.6 50.9 70.6 733 88.1 67.7 64.0 40.3 65.4 68.3 50.7 78.5 62.4

GLIP-T 1 Full 54.8420 18.4410 338411 70.1420 642415 83. 7430 708421 562415 229102 56.6405 599104 189415 54.5:27 5l.lio
GLIP-T 3 Full 58.1+0s 229413 40.8+00 65. 7416 66.0+02 84.7 105 65.7+25  62.6414 272427 619:15 60.7x02 271112 704125 549102
GLIP-T 5 Full 59.5+04 23.8.+00 43.6+14 68.7+15  66.1+06 85.4 04 72.3x00  62.1:20 273112 61.0:15  62.7+16  34.5:05 66.6:23  56.4:04
GLIP-T 10 Full 591413 26.3+11 463116 673115 67.1+07 87.8x0s 723400 577417 34.6117 654114 61.6410 393410 T47:25 584402
GLIP-T All Full 62.3 31.2 52.5 70.8 78.7 88.1 75.6 61.4 514 65.3 71.2 58.7 76.7 64.9

GLIP-L 1 Linear 63.7 +01 7.6+03 281402 74.6200 60.3100 413451 702415 67.0410 71.0200 60.5405 679101 24.8400 66.1:00 54.110s
GLIP-L 3 Linear 64.8101 8.5+01 337402 743102 641102 37.0+02 69.3:00  66.6+10  T1.2+05 632105 68.0t01  24.8100 65.9:04 54.7:02
GLIP-L 5 Linear 65.0+01 8.8+01 334405 T4.1:01 63.8+00 372400 69.3400 692106 T1.5+01 642+05 68.0x01 253402 65.2+05s  55.0+00
GLIP-L 10 Linear 65.2:+03 11.5+423 35.1+04 74.0+00 64.7 100 38.0+10 717417 66.7+03  72.5+05 65.6+11 67.9+00 258402 672105 55.8z04
GLIP-L All  Linear 70.9 9.6 423 75.3 70.5 39.4 69.3 71.6 73.9 69.7 72.1 332 72.3 59.2

GLIP-L 1 Prompt | 62.8+0s 18.0+15 374205 719424 6890 81.8434 65.0225  63.9x04 702112 67.0x0s 693101 27.6x04 69.8206 59.5104
GLIP-L 3 Prompt | 65.0z0s 21.4x00 436511 729107 704101 914207 57747 707210 69.7+00 626105 67.7+0s 362+11 68.8+1is 614105
GLIP-L 5  Prompt | 65.6+03 19.9416 47.7+01 737501 70.6403 86.8+05 64.6:07  69.4135  68.0+15 67.8:1s 683105 36.6+16 71.9:06 624105
GLIP-L 10 Prompt | 65.9+02 234426 50.3z07  73.6:07 71.8z0s 86.5+03 705411 69.0+0s 69.41+24 70.8+12 68.8+0s 393400 749121 6424104
GLIP-L All  Prompt | 72.9 23.0 51.8 72.0 75.8 88.1 752 69.5 73.6 72.1 73.7 535 81.4 67.9:+00
GLIP-L 1 Full 648106 18.7x06 395512 70.0x15 70.5z02 69.8+150 70.640 684+ 71.0x15 654+ 68.1:02 289120 72.9:s7 599114
GLIP-L 3 Full 65.6406 22341 452408 723414 704404 81.64133 718405 653416 67.6410 667409 68.110s 37.0419 731433 62.1107
GLIP-L 5 Full 66.6.+04 264425 495411 70.7+02 719402 88.1+00 T1.1z06  68.8+12 685117 70.0:00 683105 39.9+14 75.2:27 642103
GLIP-L 10 Full 66.4 107 320414 52341 70.6+07 724403 88.1+00 671136 64.7131 694114 T1.5:0s  68.4+07 443106 763111 64.9:07
GLIP-L All Full 69.6 32.6 56.6 76.4 79.4 88.1 67.1 69.4 65.8 71.6 75.7 60.3 83.1 68.9

Table 10. Per-dataset performance of DyHead, GLIP-T, and GLIP-L. For Pascal VOC, we report the mAP (IoU=0.50:0.95) using the COCO
evaluation script, to be consistent with other 12 datasets. “Linear” denotes linear probing. “Prompt” denotes prompt tuning. “Full” denotes
full-model tuning.



Model Shot  Tune PascalVOC ~ AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols  Pothole Thermal Avg

GLIP-T (A) 1 Linear 52.9:01 132403 213432 65.0+20 23.1x05 11440 573446  53.5+07 168400 54.1:01 34.5102 5.8:01  40.8:04 34.6106
GLIP-T (A) 3 Linear 54.6+02 13.4+01 28.3+01 65.4:10 26.0+03 11.4+00 50.8+07 588103 15.8+07 56.1+10 344100 6.5:00 45.8205 35.9:im
GLIP-T(A) 5 Linear 553401 14.0+03 28.5+01 652413 284402 11.7+00 639400 592405 169402 56.6+02 36.9+0s 93100  43.2:05 37.6+01
GLIP-T (A) 10 Linear 56.8+02 14.3 402 29.0+01 67.0401 29210 11.6+0: 645005 597407 16.6407  56.9+00 332415 T.4ior 462108 379402
GLIP-T (A) All Linear 62.0 15.1 322 66.1 40.9 12.1 66.9 60.5 225 62.4 49.8 17.1 65.7 44.1x00
GLIP-T (A) 1 Prompt 52.1+05 114502 23.7 06 66.6+02  21.0x02 8.6x06 46.7 0. 53.2+02 171407 588402 379105 6.0+02 38.3104  34.0101
GLIP-T(A) 3  Prompt | 54.9:0: 134425 259402 659105 227401 33.6414 46.6+00 537104 185408 582106 38.1i0s 62401 424102 36.9:0s
GLIP-T (A) 5 Prompt | 55.6+02 13.6:04 26.1x04 65.7+15 24.5+04 56.9426 60.5:06  55.2402  19.0415  57.0x0s 364114 63100 432100 40.0x03
GLIP-T (A) 10 Prompt | 56.6+0: 15.8=+0s 26.2+01 68.0x06 24410 412105 60300 559104 19.6116 57.5+10 36.1x0s 6.0x01  424:12 39.2:00
GLIP-T (A) All Prompt | 58.8 16.4 28.7 69.5 28.8 56.9 60.9 56.3 20.5 60.7 433 10.4 512 433

GLIP-T (A) 1 Full 44.8+07 169412 28.0410  64.6+16 541415 64.14120 558406 556415 21.6400 534415 43.8+00 109412 523147 435402
GLIP-T (A) 3 Full 49.5+06 233414 367412 625416 59.9+1 84.1415 602411 45.0426 265419 544100 44.6437 23.6407 63.5:127 48.8+0s
GLIP-T (A) 5 Full 50.8:+0s 25307 412408 624100 60.4+00 86.4+23 592485 447425 282407 55.6:20 51.7x0s 27.0x0s 62.1:60 50.4:0s
GLIP-T (A) 10 Full 51.7+0s 29.9+24 443108 67.8427 641403 87.9+03 713420 47.0442 288420 56.9+00 523104 29.1420 727420 S54.1+os
GLIP-T (A) Al Full 55.1 353 50.9 78.0 78.0 86.3 75.2 54.8 44.1 61.4 69.3 573 80.6 63.6

GLIP-T (B) 1 Linear 54.001 6.6=00 172400 73.3+07 23.7+07 63.6+02 51.5200  51.8402 255401 56.4:01 452110 6.7:010  56.5:04 40.9102
GLIP-T (B) 3 Linear 54900 6.6+00 252402 73.1x03 293104 63.3x01 553436 56.1+04 248104 57.5+06 44.8+t01 69102  58.5:05 42.8+03
GLIP-T(B) 5 Linear 56.0+0s 6.6:00 257403 729408 28410 62.7+02 705412 56.1405 254405 58.6102 46.8+0s 9.4400  52.8+04s 44.0+02
GLIP-T (B) 10 Linear 57.3 402 6.6+00 27.8+00  75.8+0s 30.1s02 62.8404 678415 532402 24.0401 615114 439105 7.6101 584105 444403
GLIP-T (B) All Linear 64.3 6.6 35.6 739 449 62.8 73.6 63.9 342 65.0 61.8 20.5 66.6 51.8

GLIP-T (B) 1 Prompt | 52.7:04 16.1+0s 252403 725104 56.4z0s 74.5+10 562445 56.5+15 223115 55.0x05 53.0+13 7.1ios  54.9z0s 46404
GLIP-T (B) 3  Prompt | 54.7+09 16.6:+06 338403 76.7+10 55.9+06 772442 595456 557420 242412 56.9+07 513114 184406 56.6417  49.0+07
GLIP-T(B) 5 Prompt | 57.4+0s 20.0£15 359415 76.0104 5824108 787142 614412 565415 272408 55.0247 53.61415 214405 564110 50.6404
GLIP-T (B) 10 Prompt | 57.8+0s 22.5x07 39.1x0s  74.7+15 58.8z0s 85.6+13 59.6x00  56.7+15 324105 59.3xis 524105 20.7x0 66.1x1s  52.8+0

GLIP-T (B) All Prompt | 64.6 18.2 473 71.3 70.1 85.6 59.6 65.0 37.9 61.3 64.6 39.0 76.4 58.5

GLIP-T (B) 1 Full 48419 16.6:+06 31.8+17  70.9+14 553104 78.8:27 66.3+16  48.1x60 233115 57.0x0s 529106 129204 61.0:15 48.0z07
GLIP-T (B) 3 Full 51.7x0s 234126 37240 69.5+10 59.6007  85.4104 624110 565415 30.0x10  57.6412 547416 24515 6431 521404
GLIP-T (B) 5 Full 52907 27407 41.5+06  68.4+1s 61.9+05s  81.0133 693135 61.2:26 26.9+10  58.1x0s 574417 283115 573124 532407

GLIP-T (B) 10 Full 53911 282413 43.1+0s  69.0+21 654414 873106 65.1421 523432 30.6107  60.2:22 53.0+25 34.2+19 71.8:25 54.9+06
GLIP-T (B) Al Full 56.9 28.7 54.0 68.3 78.4 88.1 72.7 57.7 412 63.8 69.0 59.8 75.8 62.7

GLIP-T(C) 1 Linear | 57.0+02 6.4 40, 21.1x0s 742400 609101 24.6101 64.0400  52.0401  21.2401  55.6202 50.9+05 14.6400 68.7x06 43.9+01
GLIP-T(C) 3 Linear | 59.0x0 82404 284+02  742+00 61.5+00 242403 64.0x00  57.8+06 209x01 57.1xos 493402 15.7z01 69.5:05 45.4x00
GLIP-T(C) 5 Linear | 59.6:00 6.5+01 299406 741415 619100  24.9:0: 649415 52.0405  21.7+0s 634205 48.5+12 222405 67.6:07 45901
GLIP-T (C) 10 Linear | 60.8+02 7.6+0s 31.6401 743412 632401 253402 65.8406 582425 22.6105 62.6105 46.0101 20.0404 694111 46.7+02
GLIP-T (C) All Linear | 66.4 8.2 38.2 71.0 68.5 37.7 64.0 59.7 325 66.1 62.4 324 78.2 52.7

GLIP-T(C) 1  Prompt | 52.6+10 13.30s 308415 704100 603104 74513 T1.1s1s 58.8z02 248415 584+ 51.8+41s 228+ 68.2+01  50.6104
GLIP-T(C) 3  Prompt | 57.4+02 18.9+15 362412 74.0426 64.0+1: 84.6+07 64.1+37  59.2438  23.0426 61.2+14 53.1417 27.0x11 65.5:14  52.9+04
GLIP-T(C) 5 Prompt | 588410 20.2+07 413415 732414 64.6415 823429 69.14s1 58.0427 272440 592410 537105 26.2425 66.5:25 539405
GLIP-T(C) 10 Prompt | 59.8+0s 21.94351 428407 73.1x09 66.9+0s 85.7 4356 69.9:21  58.5+1s 257414 61.3:10 54.1x0s 30.1:37 749202 55.8+09
GLIP-T(C) All Prompt | 67.3 24.8 49.0 722 73.2 82.5 722 61.1 42.6 64.5 68.8 51.8 80.7 62.4

GLIP-T(C) 1 Full 52.5+04 16.2+12 34545 689411 642412 809413 659430 519412 223431 5634115 557412 20.8415 55.04s2  49.6+402
GLIP-T(C) 3 Full 571404 23.9+02 392401 682407 659106  85.410s 683402 52.0420 30.8+1s  59.0x15 549111 295435 64.8:30 53.8401
GLIP-T (C) 5 Full 57.607 27.6+11 43,6403 67.8+20 66.4x04 84.2.404 67.6+26 554427 271452 60.4+27 598108 37.8+11 57.065  54.8+0s
GLIP-T (C) 10 Full 57104 31913 479+10  66.7+41 677104 86.112s 632434 522445 355+ 612107 58.6:00 389116 75.8:36 57.1xos
GLIP-T (C) Al Full 62.3 29.1 53.8 72.7 78.4 85.8 68.6 60.7 43.6 65.9 72.2 55.9 81.1 63.9

Table 11. Per-dataset performance of GLIP-T (A, B, and C). For PascalVOC, we report the mAP (IoU=0.50:0.95) using the COCO
evaluation script, to be consistent with other 12 datasets. “Linear” denotes linear probing. “Prompt” denotes prompt tuning. “Full” denotes
full-model tuning.
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