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1. Overview

In the supplementary material, we start with more de-
tails of the training setup in Sec. 1.1 and model complex-
ity in Sec. 1.2. Further, we give the per-class scores of
ScanNet-V2 [4], Semantic3D [6] and SemanticKITTI [2]
in Sec. 1.3, and provide more visual results in Sec. 1.4. Fi-
nally, we compare the dynamic augmentor and the fixed one
in Sec.1.5.

1.1. Training Setup

Weakly Setting. We create the weakly-supervised
dataset by randomly annotating a tiny fraction of points in
a class for each point cloud sample. Specifically, we set up
two weakly-supervised training methods: 1pt and 1%. At
1pt setting, we annotate one point for each class for each
point cloud sample. At 1% setting, we select 1% of the
points that are labeled for each class randomly, and these
labeled points will not change during the training. Thus, at
the semantic level, we only annotate some points for each
semantic class as this is a form of weak-supervision (incom-
plete supervision) defined by Zhou et al. [20]. In addition,
Xu et al. [17] and Zhang et al. [18] also define incomplete
supervision as a weakly-supervised task. Therefore, we fol-
low the definition in this paper.

Training configuration. Here we have supplemented
the experimental details of the main paper. Our network
training is conducted on the RTX Titan GPU with 24 GB
memory. We use a grid size of 4cm for indoor dataset
and 6cm for outdoor dataset to down-sample the raw point
clouds, let the barycenter of each small grid be the selected
point. Then the network takes input point clouds of size
40960 points for all datasets during training.

† Corresponding authors.

Method
Training

time
Network

parameters
Total reference

time

PSD(1%) [18] 302 1.10 263
HybridCR(1%) 387 1.51 279

Table 1. The training time of per-epoch (in seconds), the network
parameters (in millions) and total test time (in seconds) on S3DIS.

1.2. Model Complexity

We list the training time of per-epoch, the network pa-
rameters, and the total test time in Tab. 1 compared with
PSD [18]. Since the parameters of the Siamese network are
shared, only the parameters of dynamic point cloud aug-
mentor are added compared to the PSD, so that the pa-
rameters of HybridCR are more by 0.41M than PSD. Since
the augmentation operation and pseudo label selection are
only introduced in the training phase, the training time of
HybridCR is 85s per epoch longer than PSD. In compari-
son, the total reference time of HybridCR is relatively simi-
lar with PSD. Considering the significant improvements on
quantitative results provided by HybridCR, it is still an effi-
cient method.

1.3. Detailed Quantitative Results

Evaluation on ScanNet-V2. We present the segmen-
tation performance of per-class on the ScanNet-V2 and
choose the weakly-supervised setting of 1% for compari-
son. From Tab. 2. It can be observed that our HybridCR
achieves 56.8% mIoU and 2.1% improvements against
PSD. Moreover, in the aspect of specific classes, our method
gains 11.1%, 8.8%, 8.4%, improvements in “door”, “other-
furniture”, “curtain” against PSD, respectively, and achieve
the best performance on “picture”. While HybridCR can
significantly improve the performance of these classes and
demonstrate that our method can learn more discrimina-
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PointNet [12] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
PCNN [1] 49.8 55.9 64.4 56.0 42.0 71.1 22.9 41.4 43.6 35.2 94.1 32.4 15.5 23.8 38.7 49.3 52.9 50.9 81.3 75.1 50.4
SegGCN [8] 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
PointConv [16] 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
KPConv [14] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
RFCR [5] 70.2 88.9 74.5 81.3 67.2 81.8 49.3 81.5 62.3 61.0 94.7 47.0 24.9 59.4 84.8 70.5 77.9 64.6 89.2 82.3 61.1
HybridCR 59.9 87.2 70.7 68.3 56.1 78.4 46.3 61.6 46.5 45.6 93.6 42.7 20.7 46.4 56.7 53.1 69.5 48.0 71.3 76.9 58.4

weakly PSD(1%) [18] 54.7 57.1 67.8 65.9 46.5 77.8 38.8 52.8 49.2 30.4 93.3 38.7 30.7 43.1 38.2 52.6 66.9 57.2 71.6 60.9 50.6
HybridCR(1%) 56.8 58.9 65.8 66.8 42.3 80.2 36.7 61.2 58.1 45.5 90.1 47.5 33.4 41.0 37.5 51.1 70.5 60.8 71.0 60.1 57.9

Table 2. Quantitative results of per class on ScanNet-V2 [4]. (mIoU %)

Figure 1. Visualization results on the test set of ScanNet-V2. Raw point cloud, results of the baseline and ours are presented separately
from top to bottom.

tive features. Besides, We achieve comparable performance
close to the fully-supervised SegGCN [8], which shows that
our method is effective for weakly-supervised point cloud
segmentation.

Evaluation on Semantic3D. We conduct the quantita-
tive evaluations on Semantic3D (reduced-8) and list the
per-class scores in Tab. 3. Mean Intersection-over-Union
(mIoU) and Overall Accuracy (OA) of all classes are used
as the standard metrics. We compared some full supervised
methods published in recent years such as SnapNet [3],
SEGCloud [13], ShellNet [19], KPConv [14], RandLA-
Net [7], and PointGCR [9], RFCR [5]. At 1% setting, Hy-
bridCR achieves 76.8% and 94.9% in terms of both mIoU
and OA, comparable to the fully-supervised methods. Com-
pared with the fully supervised RandLA-Net, HybridCR is

0.6% lower than RandLA-Net in mIoU while 0.1% higher
in OA, respectively. But, we achieve the best performance
in the classes of “man-made” and “nature”. Therefore,, the
results show that HybridCR can generate to the sparse out-
door dataset.

Evaluation on SemantucKITTI. We conduct the quan-
titative evaluations on SemanticKITTI and list the per-
class scores in Tab. 4. We compared some full su-
pervised methods published in recent years, including
PointNet [11],SqueezeSegV2 [15], DarkNet53Seg [2],
RangeNet53++ [10] and RandLA-Net [7]. It can be found
that HybridCR achieves the best performance among the
fully-supervised setting comparison. At 1% setting, Hy-
bridCR reports 52.3% in mIoU, which are close to the per-
formance of the fully-supervised methods. Compared with



Set. Methods mIoU(%) OA man-made. natural. high-veg. low-veg. buildings hard-scape scanning-art. cars

Fully

SnapNet [3] 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SEGCloud [13] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
ShellNet [19] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
KPConv [14] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7
RandLA-Net [7] 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8
PointGCR [9] 69.5 92.1 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3
RFCR [5] 77.8 95.0 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7
HybridCR 77.4 95.0 97.3 84.1 87.7 58.2 95.2 48.2 67.5 81.0

weakly PSD(1%) [18] 75.8 94.3 97.1 91.0 86.7 48.1 95.1 46.5 63.2 79.0
HybridCR(1%) 76.8 94.9 97.8 94.0 86.6 52.9 95.3 47.1 64.9 75.5

Table 3. Quantitative results of per class on Semantic3D (reduced-8) [6]. (mIoU %, OA %)

Figure 2. Visualization results on the test set of Semantic3D. Raw point cloud, results of the baseline and ours are presented separately
from top to bottom.

the fully supervised DarkNet53Seg and RangeNet53++, our
HybridCR is 2.4% 0.1% higher in mIoU, respectively. Be-
sides, we achieve the best performance in the “vegeta-
tion”, “trunk” and “bycicle” classes. Therefore, the results
demonstrate that HybridCR has reliable performance on the
outdoor dataset.

1.4. Quantitative Results

Visualization on ScanNet-V2. In Fig. 1, we show visu-
alization results on the test set of ScanNet-V2. Since there
is no public ground truth, we show the raw point clouds
at the top row and our segmentation results at the bottom
row. It can be observed that HybridCR can achieve good
segmentation results for most classes. At the 1% setting,
the segmentation precision of small corners and boundaries
e.g., “ wall” and “door” area compared to PSD, is further
improved.

Visualization on Semantic3D. Fig. 2 shows the visual-

ization results on the test set of Semantic3D. Since there is
no public ground truth, we show the raw point cloud at the
top row and our segmentation results at the bottom row. In
general, it can be seen that HybridCR achieves good qual-
itative segmentation results at 1% setting. Our method can
also make more accurate predictions for some categories (
e.g., “low-veg.”, “buildings” and “man-made”) with a small
number of points.

Visualization on SemanticKITTI. Fig 3 shows more
qualitative results of HybridCR on the validation split. It
can be seen that our method achieves consistent segmenta-
tion results to ground-truth, especially in “road” and “car”,
which are difficult to distinguish while critical on sparse
outdoor scenes in the auto-driving application.

1.5. Dynamic vs. fixed augmentor of multiple runs.

In Tab. 5, we report 1pt and 1% results with mean and
std.dev. (5 runs) on S3DIS Area-5, as well as dynamic and
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PointNet [11] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SqueezeSegV2 [15] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3
DarkNet53Seg [2] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
RangeNet53++ [10] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9
RandLA-Net [7] 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7
HybridCR 54.0 90.5 73.9 59.1 21.2 88.3 93.9 42.7 22.8 31.6 36.8 81.7 61.7 66.1 50.2 45.5 4.5 57.4 49.5 49.0

weakly HybridCR(1%) 52.3 89.4 72.9 61.5 20.6 85.8 92.7 30.2 27.3 27.7 23.6 83.2 64.5 69.3 50.1 45.8 3.9 55.2 41.8 48.2

Table 4. Quantitative results of per class on SemanticKITTI [2]. (mIoU %)

Method #1 #2 #3 #4 #5 #6 #7 #8

1pt 48.2±(0.3) 50.7±(0.3) 49.8±(0.5) 50.2±(0.2) 51.1±(0.2) 50.8±(0.1) 51.0±(0.3) 51.5±(0.2)
Dynamic(1pt) - 50.7±(0.3) - - - 50.8±(0.1) 51.1±(0.3) 51.5±(0.2)

Fix(1pt) - 47.2±(0.4) - - - 47.7±(0.3) 48.0±(0.2) 48.3±(0.3)

1% 63.5±(0.1) 64.5±(0.3) 63.9±(0.4) 64.0±(0.2) 65.0±(0.3) 64.7±(0.4) 65.1±(0.2) 65.3±(0.3)
Dynamic(1%) - 64.5±(0.3) - - - 64.7±(0.4) 65.1±(0.2) 65.3±(0.3)

Fix(1%) - 59.8±(0.1) - - - 61.8±(0.2) 61.4±(0.3) 62.6±(0.1)
Table 5. Dynamic vs. fixed augmentor on S3DIS Area-5 in 1pt and 1%. #1-#8 are the ablation settings in Tab. 3 of the main paper.

fixed augmentors. Note that #1-#8 are the ablation settings
in Tab. 3 of the main paper. For 1pt and 1% setting, it can
be found that the dynamic augmentor outperform the fixed
one by 3.2% and 2.7% mIoU at the ablation setting #8, re-
spectively.
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