
Invariant Grounding for Video Question Answering

Supplementary Material

Causal Scene Complement Scene

! $

" # %

Causal Scene Complement Scene

! $

" # %

Causal SceneComplement Scene
&

! $

" # %

What is the girl doing? – ride

What is the woman (cat) doing? – talk (play)

What is the woman doing? – talk

Figure 7. Illustration of complement type.

A. Example of context type
As shown in Figure 7, we classify the relation be-

tween causal scene and its complement (e.g. T L9999K C)
into three types, where each row encompasses a causal
graph (left) that depicts typical causal-complement relation
demonstrated in the example (right):

• In the first row, C and T has no causal relation (i.e.
T?C).

• The second row shows a scenario that C is the direct
cause of T (i.e. C ! T), or vise versa if the question
is modified (e.g.’What is the cat doing?’)

• Similar to the example in Figure 1, the third row demon-
strates how shortcut deviate the prediction from the gold
answer (e.g. ”talk”) to false prediction (e.g. ”cook”) via
common cause E (e.g. visual concept ”kitchen”) since
LMI between visual concept ”kitchen” and candidate an-
swer ”cook” is much higher than it is with ”talk”.

B. Our backbone
Most VideoQA architectures from the state of the art are

compatible with our IGV learning strategy. To testify, we
design a simple and effective architecture inspired by [15].
Specifically, fÂ is presented as a combination of a visual-
question mixer and an answer classifier. The mixer first en-
code ĉ:

vĉ
g, vĉl = LSTM5(ĉ) (15)

where outputs vĉg 2 Rd, vĉl 2 RN⇥d denote the global
and local feature of ĉ respectively. Then, based on the

concatenation of local representation ql (cf . Equation (6))
and vĉl , we construct an undirected heterogeneous graph
that propagates information over each video shot and each
question token. Typically, the adjacency matrix Gĉ 2

R(L+N)⇥(L+N) is computed as the node-wise correlation
scores in form of dot-product similarity, where N  K is
the sequence length of casual scene. The output of the graph
is assembled as holistic local factor sĉl 2 Rd via a attention
pooling operator. More Formally, the process is as follows:

xĉ = [vĉl ; ql], Gĉ = �(MLP5(xĉ)) · �(MLP6(xĉ))> (16)

zĉ = GCN(xĉ,Gĉ) (17)

slĉ = Pooling(zĉ) (18)

where xĉ, zĉ =2 R(L+N)⇥d denote the input and output
of graph reasoning, MLP5 and MLP6 denote is affine pro-
jection followed by ReLU activation �(·). To capture the
global information, our mixer integrates two global fac-
tors vĉg and qg into holistic representation via BLOCK fu-
sion [4]:

sgĉ = Block(vĉg, qg) (19)

Similarly, we obtain the final representation by applying the
BLOCK again to global and local factor, which is further
decoded into answer space with classifier :

sĉ = Block(sgĉ , slĉ) (20)

ŷĉ = (sĉ) (21)

Analogously, we can obtain the predictive answer for t̂ and
v⇤ via the shared backbone predictor.

C. Baselines
We compare our design against some existing work,

which can be categorized into three categories: 1) Memory-
based methods that perform multi-step reasoning via updat-
ing the recurrent unit, which refines the cross-modal repre-
sentation iteratively. Specifically, AMU [37], Co-Mem [10]
apply this module to encode the visual representation, and
HME [9] managed better exploitation for both modalities;
2) Graph-based methods like HGA [15] and B2A [19]
adopt graph reasoning on the clip-level, whose adjacent
matrix is built on node-wise visual similarity. Compara-
tively, B2A additionally establishes a text graph through
question parsing, and abridge two modalities via message

passing; 3) Hierarchical-based methods HOSTR [8] and
HCRN [17] have similar hierarchical conditional archi-
tectures. Their discrepancy lies in the feature granular-
ity, where HCRN grounds the temporal relation between
frames, while HOSTR roots in object trajectories.

D. Implementation details
All experiments are conducted on GPU NVIDIA Tesla

V100 installed on Ubuntu 18.0.4. In terms of complex-
ity, our algorithm matched equally with the corresponding
baseline. As a comparison, the default backbone model
is trained for 2 hours till convergence on MSRVTT-QA,
whereas IGV takes 2.6 hours. For space complexity, since
we use the same predictor for the causal, complement, and
intervened prediction, IGV only takes 10% more parame-
ters than the default backbone model.

