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1. Implementation Details

Tab. 1 and Tab. 2 provide an overview of the experimental
settings, in particular report the number of train and test
samples for each benchmark and number of labels used in
different partially annotated settings respectively. Next we
explain the implementation details for each dataset.

Cityscapes. The Cityscapes dataset [6] contains 3475 la-
belled images. As in [10], we use 2975 images for training
and 500 images for testing. In multi-task partially super-
vised learning setting, we consider the one-label setting in
Cityscapes, as there are only two tasks in total, i.e. we ran-
domly select and keep label only for 1 task for each train-
ing image, resulting in 1487 training images annotated for
segmentation and 1488 training images labelled for depth
estimation, as shown in Tab. 2.

We follow the training and evaluation protocol in [10]
and we use SegNet [1] as the MTL backbone for all methods,
use cross-entropy loss for semantic segmentation, l1-norm
loss for depth estimation. We use the exactly same hyper-
parameters including learning rate, optimizer as in [10].
More specifically, we use Adam optimizer with a learning
rate of 0.0001 and train all models for 200 epochs with a
batch size of 8 and halve the learning rate at the 100-th
epoch. We also employ the same evaluation metrics, mean
intersection over union (mIoU) and absolute error (aErr) to
evaluate the semantic segmentation and depth estimation
task, respectively as in [10].

For our model, we use the encoder architecture of Seg-
Net for instantiating the joint pairwise task mapping (m̄ϑ)
and include one convolutional layer as task specific input
layer in m̄ϑ. For Direct-Map and Perceptual-Map,
as in [15] we use the whole SegNet as the cross-task map-
ping functions. We use the same data augmentations from
the updated implementation in [10]1, i.e. random crops and
rand horizontal flips.

NYU-v2. The dataset [13] contains 795 training images
and 654 test images. To evaluate the multi-task partially

1https://github.com/lorenmt/mtan

Dataset # Train # Test Segmentation Depth Human Parts Normals Saliency Edges

Cityscapes [6] 2975 500 ! ! - - - - - - - -
NYU-v2 [13] 795 654 ! ! - - ! - - - -
PASCAL [4] 4998 5105 ! - - ! ! ! !

Table 1. Details of multi-task benchmarks.

Dataset # label # labelled images
Segmentation Depth Human Parts Normals Saliency Edges

Cityscapes [6] one 1487 1488 - - - - - - - -

NYU-v2 [13] random 392 408 - - 385 - - - -
one 265 265 - - 265 - - - -

PASCAL [4] random 2450 - - 2553 2480 2445 2557
one 1000 - - 999 1000 1000 999

Table 2. Details about multi-task partially supervised learning
settings in three benchmarks used in this work. ‘random’ means
the random-label setting where each training image has a random
number of task labels and ‘one’ indicates the one-label setting
where each training image is annotated with one task label. ‘#
labelled images’ shows the number of images containing labels for
each task, e.g. segmentation.

supervised learning, we consider one-label and random-label
settings. For one-label setting, we randomly select and keep
label for only 1 task for each training image, resulting in
265 images with annotation for segmentation, 265 images
labelled for depth estimation and 265 images for surface
normal. For random-label setting, we randomly select and
keep labels for at least 1 and at most 2 tasks (1.49 labels
per image), i.e. 392 images for semantic segmentation, 408
images for depth estimation, 385 images for surface normal,
as shown in Tab. 2.

We follow the training and evaluation protocol in [10]
and we use the the SegNet [1] as the MTL backbone for all
methods. As in [10], we use cross-entropy loss for semantic
segmentation, l1-norm loss for depth estimation and cosine
similarity loss for surface normal estimation, use the same
optimizer and hyper-parameters, i.e. Adam optimizer with
a learning rate of 0.0001. We train the all model for 200
epochs with a batch size of 2 and halve the learning rate at
the 100-th epoch and employ the same evaluation metrics,
mean intersection over union (mIoU), absolute error (aErr)
and mean error (mErr) in the predicted angles to evaluate
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the semantic segmentation, depth estimation and surface
normals estimation task, respectively as in [10].

We use the encoder of SegNet architecture for the joint
pairwise task mapping (m̄ϑ) and one convolutional layer
as task specific input layer in m̄ϑ. For Direct-Map and
Perceptual-Map, as in [15] we use the whole SegNet
as the cross-task mapping functions. To regularize train-
ing, we use the exact same data augmentations from the
updated implementation from [10], e.g. random crops and
rand horizontal flips augmentations.

PASCAL-context. The dataset [4] contains 4998 training
images and 5105 testing images for five tasks, i.e. seman-
tic segmentation, human parts segmentation, surface nor-
mal, saliency detection and edge detection. We consider
two partially supervised learning settings, random-label and
one-label setting. For one-label setting, we have 1 label per
image, i.e. 1000, 999, 1000, 1000, 999 labelled images for se-
mantic segmentation, human parts, surface normal, saliency
and edge detection, respectively. In random-label setting,
we randomly sample and keep labels for at least 1 and at
most 4 tasks (2.50 labels per image), resulting in 2450, 2553,
2480, 2445, 2557 labelled images for semantic segmentation,
human parts, surface normal, saliency and edge detection,
respectively, as shown in Tab. 2.

We follow exactly the same training, evaluation protocol
and implementation in [14] and employ the ResNet-18 [7] as
the encoder shared across all tasks and Atrous Spatial Pyra-
mid Pooling (ASPP) [3] module as task-specific heads. We
use the same hyper-parameters, e.g. learning rate, augmenta-
tion, loss functions, loss weights in [14]. More specifically,
we use Adam as the optimizer with a learning rate of 0.0001
and a weight decay of 0.0001. As in [14] all experiments
are performed using pre-trained ImageNet weights. We train
all multi-task learning methods for 100 epochs with a batch
size of 6 and we anneal the learning rate using the ‘poly’
learning rate scheduler as in [2, 14]. We follow [14] and
use fixed loss weights for training all multi-task learning
methods, i.e. the loss weight is 1, 2, 10, 5, 50 for semantic
segmentation, human parts segmentation, surface normal
estimation, saliency detection and edge detection, respec-
tively. Please refer to [14] for more details. For evaluation
metrics, we use the optimal dataset F-measure (odsF) [11]
for edge detection, the standard mean intersection over union
(mIoU) for semantic segmentation, human part segmentation
and saliency estimation are evaluated, mean error (mErr) for
surface normals. We modify the ResNet-18 to have task
specific input layers (one convolutional layer for each task)
before the residual blocks as the mapping function m̄ϑ in
our method.

Multi-task performance. Following prior work [14], we
also report the multi-task performance △MTL of the multi-
task learning model as the average per-task drop in perfor-

mance w.r.t. the single-task baseline:

△MTL =
1

K

K∑
t=1

(−1)ℓi(Pmtl
t − P stl

t )/P stl
t , (1)

where ℓi = 1 if a lower value of Pt means better performance
for metric of task t, and 0 otherwise.

2. More results
Here, we report more results from single-task learning

(STL) model, Contrastive-Loss and Discriminator-Loss and
also qualitative results.

2.1. Quantitative results

Results on Cityscapes. Here, we report the results on
Cityscapes for only one label setting as there are two tasks in
total in Tab. 3. We also report results of single-task learning
models which are used to compute the multi-task perfor-
mance (△MTL) to better analyze the results as in [14]. The
performance of MTL methods are worse than single-task
learning models for some tasks as the MTL models have less
capacity and there is a problem of imbalanced optimization
etc as discussed in [8, 9, 14].

The results of MTL model learned with SL when all task
labels are available for training to serve as a strong baseline
for multi-task learning methods. In the partial label setting
(one task label per image), the performance of the SL base-
line drops substantially compared to its performance in full
supervision setting. While the SSL baseline, by extracting
task-specific information from unlabelled tasks, improves
over SL, further improvements are obtained by exploiting
cross-task consistency in various ways except Discriminator-
Loss. The methods learn mappings from one task to another
one (Perceptual-Map and Direct-Map) surprisingly perform
better than the ones learning joint space mapping functions
(Contrastive-Loss and Discriminator-Loss), possibly due to
insufficient number of negative samples. Finally, the best
results (e.g. the best multi-task performance △MTL) are ob-
tained with our method that can exploit cross-task relations
more efficiently through joint pairwise task mappings with
the proposed regularization. Interestingly, our method also
outperforms the SL baseline that has access to all the task
labels, showing the potential information in the cross-task
relations.
Results on Cityscapes with larger images. We also pro-
vide results for 256 × 512 setting in Tab. 4. Performance
of all methods improve significantly compared to their ones
using small images (in Tab. 3) and our method achieves
significant improvement over the baselines.
Results on NYU-v2 Here, we evaluate our method and
related methods in the random and one label settings on
NYU-v2 and we report the results in Tab. 5. We also report



# label Type Method Seg. (IoU) ↑ Depth (aErr) ↓ △MTL ↑

full STL Supervised Learning 74.19 0.0124 +0.00
MTL Supervised Learning 73.36 0.0165 -17.00

one

STL Supervised Learning 70.26 0.0141 +0.00

MTL

Supervised Learning 69.50 0.0186 -16.55
Semi-supervised Learning 71.67 0.0178 -12.22
Perceptual-Map 72.82 0.0169 -8.37
Direct-Map 72.33 0.0179 -11.94
Contrastive-Loss 71.79 0.0183 -13.77
Discriminator-Loss 68.94 0.0208 -24.95

Ours 74.90 0.0161 -3.81

Table 3. Multi-task learning results on Cityscapes. ‘one’ indicates
each image is randomly annotated with one task label. ‘STL’ means
single task learning and ‘MTL’ indicates multi-task learning.

# label Type Method Seg. (IoU) ↑ Depth (aErr) ↓ △MTL ↑

one

STL Supervised Learning 77.97 0.0126 +0.00

MTL
Supervised Learning 77.71 0.0165 -15.95
Semi-supervised Learning 79.24 0.0161 -13.38

Ours 82.41 0.0143 -4.08

Table 4. Multi-task learning results on Cityscapes using 256×512 images.
‘one’ indicates each image is randomly annotated with one task label. ‘STL’
means single task learning and ‘MTL’ indicates multi-task learning.

results of single-task learning models which are used to com-
pute the multi-task performance (△MTL) to better analyze
the results as in [14].

While we observe a similar trend across different meth-
ods, overall the performances are lower in this benchmark
possibly due to fewer training images than CityScapes. As
expected, the performance in random-label setting is better
than the one in one-label setting, as there are more labels
available in the former. While the best results are obtained
with SL trained on the full supervision, our method obtains
the best performance (e.g. best results on all tasks and the
best multi-task performance) among the partially supervised
methods. Here SSL improves over SL trained on the par-
tial labels and cross-task consistency is beneficial except for
Direct-Map in the one label setting and Discriminator-Loss,
possibly because the dataset is too small to learn accurate
mappings between two tasks, while our method is more
data-efficient and more successful to exploit the cross-task
relations. In random-label setting, where images might have
labels for more than one task, we also report our method
also leveraging the labelled corss-task relations (‘Ours+’ )
in Tab. 5 and it can indeed further boost the average perfor-
mance.
Results on PASCAL. We evaluate all methods on
PASCAL-Context, in both label settings, which contains
wider variety of tasks than the previous benchmarks and
report the results in Tab. 6. As in Cityscapes and NYU-v2,
we also report results of single-task learning models which
are used to compute the multi-task performance (△MTL) to
better analyze the results as in [14].

As the required number of pairwise mappings for Direct-
Map and Perceptual-Map grows quadratically (20 mappings

# labels Type Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ △MTL ↑

full STL Supervised learning 37.45 0.6079 25.94 +0.00
MTL Supervised learning 36.95 0.5510 29.51 -1.92

random

STL Supervised Learning 28.72 0.7540 28.95 +0.00

MTL

Supervised Learning 27.05 0.6624 33.58 -3.23
Semi-supervised Learning 29.50 0.6224 33.31 +1.70

Perceptual-Map 32.20 0.6037 32.07 +7.10
Direct-Map 29.17 0.6128 33.63 +1.38

Contrastive-Loss 30.75 0.6143 32.05 +4.96
Discriminator-Loss 26.76 0.6354 33.13 -1.84

Ours 34.26 0.5787 31.06 +11.81
Ours+ 34.91 0.5738 31.20 +12.57

one

STL Supervised Learning 24.71 0.7666 30.14 +0.00

MTL

Supervised Learning 25.75 0.6511 33.73 +1.14
Semi-supervised Learning 27.52 0.6499 33.58 +3.16

Perceptual-Map 26.94 0.6342 34.30 +2.31
Direct-Map 19.98 0.6960 37.56 -12.86

Contrastive-Loss 26.65 0.6387 34.69 +1.31
Discriminator-Loss 25.68 0.6566 34.02 +0.04

Ours 30.36 0.6088 32.08 +10.24

Table 5. Multi-task learning results on NYU-v2. ‘random’ indicates
each image is annotated with a random number of task labels and
‘one’ means each image is randomly annotated with one task. ‘STL’
means single task learning and ‘MTL’ indicates multi-task learning.

for 5 tasks), we omit these two due to their high compu-
tational cost and compare our method only to SL, SSL,
Contrastive-Loss and Discriminator-Loss baselines. We see
that the SSL baseline improves the performance over SL
in random-label setting, however, it performs worse than
the SL in one label setting, when there are 60% less labels.
By leveraging cross-task consistency, Contrastive-Loss and
Discriminator-Loss obtains better performance than the SL
baseline in one label setting while they get similar multi-
task performance to the SL baseline in random label setting.
Again, by exploiting task relations, our method obtains bet-
ter or comparable results to second best method, i.e. SSL,
while the gains achieved over SL and SSL are more signifi-
cant in the low label regime (one-label). Interestingly, SSL
and our method obtain comparable results in random-label
setting which suggests that relations across tasks are less
informative than the ones in CityScape and NYUv2.

# labels Type Method Seg. (IoU) ↑ H. Parts (IoU) ↑ Norm. (mErr) ↓ Sal. (IoU) ↑ Edge (odsF) ↑ △MTL ↑

full STL Supervised Learning 66.4 58.9 13.9 66.7 68.3 +0.00
MTL Supervised Learning 63.9 58.9 15.1 65.4 69.4 -2.75

random

STL Supervised Learning 60.9 55.3 14.7 64.8 66.8 +0.00

MTL

Supervised Learning 58.4 55.3 16.0 63.9 67.8 -2.67
Semi-supervised Learning 59.0 55.8 15.9 64.0 66.9 -2.44
Contrastive-Loss 59.0 55.3 16.0 63.8 67.8 -2.44
Discriminator-Loss 57.9 55.2 16.2 63.4 67.4 -3.35

Ours 59.0 55.6 15.9 64.0 67.8 -2.15

one

STL Supervised Learning 47.7 56.2 16.0 61.9 64.0 +0.00

MTL

Supervised Learning 48.0 55.6 17.2 61.5 64.6 -1.34
Semi-supervised Learning 45.0 54.0 16.9 61.7 62.4 -3.02
Contrastive-Loss 48.5 55.4 17.1 61.3 64.6 -1.25
Discriminator-Loss 48.2 56.0 17.1 61.7 64.7 -1.04

Ours 49.5 55.8 17.0 61.7 65.1 -0.40

Table 6. Multi-task learning results on PASCAL. ‘random’ indi-
cates each image is annotated with a random number of task labels
and ‘one’ means each image is randomly annotated with one task.
‘STL’ means single task learning and ‘MTL’ indicates multi-task
learning.

Learning from partial and imbalanced task labels. We
also evaluate our method and baselines in an imbalanced par-
tially supervised setting in Cityscapes, where we assume the
ratio of labels for each task are imbalanced, e.g. we randomly



sample 90% of images to be labeled for semantic segmen-
tation and only 10% images having labels for depth and we
denote this setting by the label ratio between segmentation
and depth (Seg.:Depth = 9:1). The opposite case (Seg.:Depth
= 1:9) is also considered. We report the results in Tab. 7,
where we also report results of single-task learning mod-
els which are used to compute the multi-task performance
(△MTL) to better analyze the results as in [14].

#labels Type Method Seg. (IoU) ↑ Depth (aErr) ↓ △MTL ↑

full STL Supervised learning 74.19 0.0124 +0.00
MTL Supervised Learning 73.36 0.0165 -17.00

1:9

STL Supervised learning 62.23 0.0126 +0.00

MTL

Supervised Learning 63.37 0.0161 -13.07
Semi-supervised Learning 64.40 0.0179 -19.36
Perceptual-Map 68.84 0.0141 -0.68
Direct-Map 67.04 0.0153 -6.90
Contrastive-Loss 67.12 0.0151 -5.95
Discriminator-Loss 68.92 0.0144 -1.80

Ours 71.89 0.0131 +5.63

9:1

STL Supervised learning 72.62 0.0191 +0.00

MTL

Supervised learning 72.77 0.0250 -15.25
Semi-supervised Learning 72.97 0.0395 -53.11
Perceptual-Map 73.36 0.0237 -11.34
Direct-Map 73.13 0.0288 -19.38
Contrastive-Loss 73.75 0.0243 -12.86
Discriminator-Loss 72.97 0.0248 -14.65

Ours 74.23 0.0235 -10.23

Table 7. Multi-task learning results on Cityscapes. ‘#label’ indi-
cates the number ratio of labels for segmentation and depth, e.g.
‘1:9’ means we have 10% of images annotated with segmentation
labels and 90% of images have depth groundtruth. ‘STL’ means
single task learning and ‘MTL’ indicates multi-task learning.

The performance of supervised learning (SL) on the task
with partial labels drops significantly. Though SSL im-
proves the performance on segmentation, its performance
on depth drops in both cases. Different from SSL, Direct-
Map, Contrastive-Loss and Discriminator-Loss improves the
performance on both tasks in 1:9 setting while their perfor-
mance on depth drop in the 9:1 case. In contrast to SL and
the baselines, our method and Perceptual-Map obtain better
results on all tasks in both settings by learning cross-task
consistency while our method obtains the best performance
(i.e. best results in all tasks and best multi-task performance,
△MTL) by joint space mapping. This demonstrates that our
model can successfully learn cross-task relations from un-
balanced labels thanks to its task agnostic mapping function
which can share parameters across multiple task pairs.
Cross-task consistency learning in conventional semi-
supervised learning. We evaluate our method and SSL
baseline on conventional SSL setting where 1

3 of training
data in NYU-v2 are labeled for all tasks and 2

3 are unlabeled,
and report the results in Tab. 8. In this setting, our method
obtains better performance than SL and SSL. We will include
a more detailed analysis in the final paper.
Cross-task consistency learning with full supervision.
Our method can also be applied to fully-supervised learning

Type Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ △MTL ↑

MTL
Supervised Learning 24.78 0.6681 33.90 +1.48
Semi-supervised Learning 26.09 0.6510 33.60 +4.37

Ours 28.43 0.6366 33.01 +8.83

Table 8. Multi-task learning results on NYU-v2 in SSL setting where 1
3

of training data in NYU-v2 are labeled for all tasks and 2
3

are unlabeled.
‘MTL’ indicates multi-task learning.

setting where all task labels are available for each sample
by mapping one task’s prediction and another task’s ground-
truth to the joint space and measuring cross-task consistency
in the joint space. We applied our method to NYU-v2 and
compare it with the single task learning (STL) networks,
vanilla MTL baseline, recent multi-task learning methods,
i.e. MTAN [10], X-task [15], and several methods focus-
ing on loss weighting strategies, i.e. Uncertainty [8], Grad-
Norm [5], MGDA [12] and DWA [10] in Tab. 9. Here, we
also report the multi-task performance (△MTL) of all MTL
methods.

Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ △MTL

STL 37.45 0.6079 25.94 +0.00

MTL 36.95 0.5510 29.51 -1.92
MTAN [10] 39.39 0.5696 28.89 +0.03
X-task [15] 38.91 0.5342 29.94 +0.89
Uncertainty [8] 36.46 0.5376 27.58 +0.86
GradNorm [5] 37.19 0.5775 28.51 -1.86
MGDA [12] 38.65 0.5572 28.89 +0.06
DWA [10] 36.46 0.5429 29.45 -1.82

Ours 41.00 0.5148 28.58 +4.88
Ours + Uncertainty 41.09 0.5090 26.78 +7.57

Table 9. Multi-task fully-supervised learning results on NYU-v2.
‘STL’ indicates standard single-task learning and ‘MTL’ means the
standard multi-task learning network.

MTL, MTAN, X-task and Ours are trained with uniform
loss weights. We see that our method (Ours) performs bet-
ter than the other methods with uniform loss weights, e.g.
MTAN and X-task, where X-task regularizes cross-task con-
sistency by learning perceptual loss with pre-trained cross-
task mapping functions. This shows that cross-task con-
sistency is informative even in the fully supervised case
and our method is more effective for learning cross-task
consistency. Compared to recent loss weighting strategies,
our method (Ours) obtains better multi-task performance
(△MTL) and better performance on segmentation and depth
estimation than other methods while slightly worse on nor-
mal estimation compared with GradNorm and Uncertainty.
This is because the loss weighting strategies enable a more
balanced optimization of multi-task learning model than
uniformly loss weighting. Thus when we incorporate the
loss weighing strategy of Uncertainty [8] to our method, i.e.
(Ours + Uncertainty), our method obtains further improve-
ment and outperforms both GradNorm and Uncertainty, e.g.
‘Ours + Uncertainty’ obtains the best multi-task performance
(+7.57).



2.2. Qualitative results

Here, we present some qualitative results.
Mapped outputs. Here, we visualize the intermediate
feature maps of ms→st and mt→st for one example in
Cityscapes in Fig. 1 where s and t correspond to segmenta-
tion and depth estimation respectively and one example in
NYU-v2 in Fig. 2 where s and t correspond to segmentation
and surface normal estimation respectively. We observe that
the functions map both task labels to a joint pairwise space
where the common information is around object boundaries,
which in turn enables the model to produce more accurate
predictions for both tasks.

Figure 1. Intermediate feature map of the mapping function of the
task-pair (segmentation to depth) of one example in Cityscapes.
The first column shows the prediction or ground-truth and the
second column present the corresponding mapped feature map
(output of the mapping function’s last second layer ).

Figure 2. Intermediate feature map of the mapping function of
the task-pair (segmentation to surface normal) of one example in
NYU-v2. The first column shows the prediction or ground-truth
and the second column present the corresponding mapped feature
map (output of the mapping function’s last second layer ).

Predictions. Finally we show qualitative comparisons
between our method, SL and SSL baselines, Perceptual-
Map (PM), Direct-Map (DM), Contrastive-Loss (CL) and
Discriminator-Loss (DL) on Cityscapes in Fig. 3 and on
NYU-v2 in Fig. 4. We can see that our method produces
more accurate predictions by leveraging cross-task consis-
tency. Specifically, in Fig. 3, compared with methods that
do not leverage cross-task consistency, the prediction of
segmentation and depth are improved by our method (top
left region) and our results are more accurate than related
baselines (PM, DM, CL and DL). In Fig. 4, we can see that
SSL produces more accurate predictions on segmentation
and surface normal than SL. And PM obtains more accurate
results on depth and surface normal than SL. While they do
not achieve consistent improvement on all three tasks, our
method can improve the results consistently on three tasks
which shows that our method is more effective on learning
cross-task consistency for MTL from partially annotated
data.



Figure 3. Qualitative results on Cityscapes. The fist column
shows the RGB image, the second column plots the ground-truth
or predictions with the IoU (↑) score of all methods for semantic
segmentation and we show the ground-truth or predictions with the
absolute error (↓) in the last column.

Figure 4. Qualitative results on NYU-v2. The fist column shows
the RGB image, the second column plots the ground-truth or pre-
dictions with the IoU (↑) score of all methods for semantic segmen-
tation, the third column presents the ground-truth or predictions
with the absolute error (↓), and we show the prediction of surface
normal with mean error (↓) in the last column.
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