
Supplementary Material:
Lepard: Learning partial point cloud matching in rigid and deformable scenes

Supplementary material includes: ablation study (Sec. I);
implementation details (Sec. II, III, IV, and V); formal def-
inition of non-rigid registration (Sec. VI); and more results
on 3DMatch and 4DMatch (Sec. VII).

I. Ablation study

–Influence of Warping Loss Weight. Applying warping
loss in general yields higher NFMR and IR 4DMatch and
4DLoMatch. In particular, in the low overlap situations,
the performance grows steadily with the increasing of the
motion loss weight (c.f. Tab. 1). In 3DMatch and 3DLo-
Match, warping loss significantly increases the Inlier Rate
(IR). However, it leads to a decrease in Registration Re-
call (c.f. Tab. 2). We assume that this is because the warp-
ing loss might suppress some border cases correspondences
which could have benefited the RANSAC. In deformable
cases, a high inlier rate is desired for successful non-rigid
registration. However, in rigid cases, the inlier rate is less
important since RANSAC is very robust to noise. There-
fore, we set λw = 0.1 for 4DMatch and λw = 0.0 for
3DMatch.

4DMatch 4DLoMatch
NFMR↑ IR↑ NFMR↑ IR↑

λw = 0 82.9 82.4 62.1 52.2
λw = 0.05 85.3 83.9 65.1 54.5
λw = 0.1 * 83.7 82.7 66.9 55.7

Table 1. Influence of warping loss on 4DMatch.

3DMatch [5] 3DLoMatch [2]
FMR↑ IR↑ RR↑ FMR↑ IR↑ RR↑

λw = 0 98.0 63.7 93.6 85.6 29.5 69.0
λw = 0.05 97.8 66.6 92.9 84.1 36.5 67.9
λw = 0.1 97.6 71.5 92.9 84.6 38.8 68.2

Table 2. Influence of warping loss on 3DMatch.

–Influence of Confidence Threshold. In rigid cases, in-
creasing the confidence threshold of correspondence leads
to a decrease in registration recall (c.f. Tab. 3). Same to
the above ablation, we assume that this is because increas-
ing the confidence threshold inevitably suppresses some
borderline correspondences which could have benefited the
RANSAC. In deformable cases, increasing the confidence
threshold results in a higher IR but getting a lower NFMR

3DMatch (RR↑) 3DLoMatch (RR↑)
θc = 0.05 93.6 69.0
θc = 0.1 92.3 67.9
θc = 0.15 91.7 67.0
θc = 0.2 91.2 65.3

Table 3. Influence of confidence thresholds on 3DMatch and
3DLoMatch.

4DMatch 4DLoMatch
Method |Kpred| NFMR↑ IR↑ |Kpred| NFMR↑ IR↑
D3Feat (1000) 267 51.6 52.7 204 23.6 21.2
D3Feat (3000) 532 55.5 54.7 379 27.4 21.5
D3Feat (5000) 697 56.1 55.3 473 28.1 21.3

Predator (1000) 273 53.3 60.0 205 30.6 29.8
Predator (3000) 534 56.4 60.4 372 32.1 27.5
Predator (5000) 698 56.8 59.3 480 32.1 25.0

Ours (θc=0.2) 523 82.2 85.4 325 63.1 60.4
Ours (θc=0.1)* 596 83.7 82.7 407 66.9 55.7
Ours (θc=0.05) 624 83.9 80.9 447 67.6 52.5

Table 4. Influence of confidence thresholds on 4DMatch
and 4DLoMatch. D3Feat [1] and Predator [2] probabilisti-
cally sample points either from a saliency heat map or from a
machability×overlap heat map (numbers in brackets are the num-
bers of sampled points). Ours uses the confidence threshold θc to
get matches from the confidence matrix (c.f. Sec. ??). All meth-
ods apply the mutual nearest neighbor criteria to filter matches.
|Kpred| indicates the average number of final predicted correspon-
dences.

(c.f. Tab. 4). We found θc=0.1 a good trade-off between
precision and recall.

–Adding more TMP blocks. We tested 3 and 4 TMP lay-
ers. The corresponding number of the Repositioning layer
is 2 and 3 because it is placed between every two consec-
utive TMP layers. As shown in Tab. 5, in 3DMatch, addi-
tional layers do not improve the results; in 4DMatch, 3 TMP
layers achieve the best results. Adding layers inevitably in-
crease the training time.

Number of TMP layer 2 3 4
Number of Repositioning layer 1 2 3

Rigid
RR(%)↑ on 3DMatch 93.6 92.8 93.0
RR(%)↑ on 3DLoMatch 69.0 68.2 68.8
Training Time (hour)↓ 20 25 31

Deformable
NFMR(%)↑ on 4DMatch 83.7 85.9 84.5.
NFMR(%)↑ on 4DLoMatch 66.9 68.1 59.6
Training Time (hour)↓ 18 21 24

Table 5. Ablation study of number of TMP layers.



II. Sparse Θ(·) Multiplication
Taking the advantage of the sparsity of Θ(·), given a

position p = (x, y, z) ∈ R3 and a feature x ∈ Rd, the
multiplication Θ(p)x can be efficiently realized by
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III. Hyper Parameters

3DMatch 4DMatch

Metric

Inlier threshold 0.1m 0.04m
RR threshold 0.2m –
FMR threshold 5% –
NFMR threshold – 0.04m

Match Prediction Confidence threshold θc 0.05 0.1
Apply MNN False True

KPFCN Config Input subsampling radius 0.025m 0.01m

Supervision GT match radius 0.06m 0.024m
Warping loss weight λw 0.0 0.1

RR: Registration Recall
FMR: Feature Matching Recall
NFMR: Non-rigid Feature Matching Recall
MNN: Mutual Nearest Neighbor

Table 6. The hyper parameters for metric evaluation, match pre-
diction, KPFCN backbone, and training loss

IV. Time and memory expense

Predator [2] Lepard (Ours)

Average time (s) 0.18 0.10
Cuda memory (MB) 13,361 6,595

Table 7. Time and Cuda memory usage of inference on an Nvidia
A100 (80G) GPU. Time is averaged on 2193 testing samples in
4DLoMatch. Lepard is about twice as efficient as Predator on both
time and memory.

KPFCN Self Att. (×2) Cross Att. (×2) Matching (×2) Procrustes (×2)

0.0109 0.0016 (×2) 0.0014 (×2) 0.0023 (×2) 0.0191 (×2)

Table 8. Average time (s) of Lepard function inference on an
Nvidia A100 (80G) GPU. Time is averaged on 2193 testing sam-
ples in 4DLoMatch.

V. KPFCN backbone architecture

Figure 1. Details of the KPFCN backbone architecture.

VI. Non-Rigid Registration
This section introduce the non-rigid registration tech-

nique used in this paper.

Deformation Model. To represent the dense motion from
a source to a target, we adapt the embedded deformation
model of Sumner et al. [4]. The non-rigid deformation is
parameterized by the deformation graph G = {V, E}, where
V is the set of node and E is the set of edge. As shown in
Fig. 2, we evenly sample graph nodes V over the source
point cloud surface. Each point in the scene has a 3D lo-
cation: gi ∈ R3. The motion of a node i ∈ V is param-
eterized by a translation vector: ti ∈ R3 and a rotation
matrix: Ri ∈ SO3. In addition, we represent rotations by
Ri = exp(ϕ∧i )Ri, where ϕi = [0, 0, 0] represents the delta
of the rotation in axis-angle form. (·)∧operator convert a
3-dimensional vector to a 3 × 3 skew-symmetric matrix.
exp : so3 7→ SO3 map the skew-symmetric matrix to 3
× 3 rotation matrix using the Rodrigues formula. Finally,
all unkowns in the graph are

G =
(
ϕ1, · · · , ϕ|V||t1, · · · , t|V|

)
Non-rigid Warping Function Given a point p ∈ R3, the
non-rigid warping functionW is defined as

W(p) =
∑
i∈V

wp,i(Ri(p− gi) + gi + ti)

where wp,i ∈ R is the “skinning weight” that measure the
influence of node i. They are computed as

wp,i = Ce
1

2γ2
||Vi−p||22



Figure 2. Deformation model. Nodes V (red dot) are evenly sam-
pled over the source surface. Edges E (green lines) are computed
between nodes based on geodesic connectivity. The point cloud
examples in 4DMatch are obtained from depth images. To com-
pute geodesic distance, we construct the surface triangle mesh by
connecting the nearby pixels’ 3D locations. We filter the triangles
with an edge larger than 4cm. During registration, for numerically
stable optimization, we ignore point cloud clusters with fewer than
40 deformation nodes.

where γ is the coverage radius of a node, for which we set to
0.9 cm for 4DMatch examples, C denotes the normalization
constant, ensuring that skinning weights add up to one∑

Vi∈V
wp,i = 1

Energy Function. The energy function of non-rigid iter-
ative closest point (N-ICP) consists of two terms: the cor-
respondence term and the regularization term. Given a set
of matches K, and the confidence of the correspondences
c(ps,pt) where (ps,pt) ∈ K. Correspondence term is de-
fined as

Ecorr(G) =
∑

(ps,pt)∈K

c2(ps,pt)||W(ps)− pt||22

We use ARAP [3] as the regularization term

Ereg(G) =
∑

(i,j)∈E

||Ri(gj − gi) + gi + ti − (gj + tj)||2

The total energy function is

Ereg(G) = λcEcorr(G) + λaEreg(G)

Residual and Partial Derivatives. The followings show
the residuals and partial derivatives for optimization.
Derivative of the wrapping functionW

∂W(p)

∂ϕi
= −wp,i(Ri(p− gi))

∧

∂W(p)

∂ti
= wp,iI3

where I3 is the 3 × 3 identity matrix. Residual term for a
correspondence (ps,pt) ∈ K

rcorr(ps,pt)
=
√
λcc(ps,pt)(W(ps)− pt)

Derivative of correspondence residual rcorr(ps,pt)
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∧
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√
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Residual term for regularization tern (i, j) ∈ E

rreg(i,j) =
√
λc(Ri(gj − gi) + gi + ti − (gj + tj))

Derivative of regularization term rreg(i,j)
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√
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= −

√
λaI3

The full Jacobian matrix J ∈ R(3|K|+3|E|)×6|V| is shown as
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where |V| is the number of graph node. |K| is number
of correspondence. |E| is the number of graph edge. Each
block in J is a 3 × 3 matrix. For the sparse nature of this
problem, most blocks are zeros. The full residual vector
r ∈ R3|K|+3|E| is shown as

r =

rcorr1

...

rcorr|K|

rreg1

...

rreg|E|



where each block is a 3 × 1 vector. The total length is
(|K|+ |E|)× 3.

Non-rigid Optimization. We use Gauss-Newton algorithm
and minimizes the total energy function Etotal. The Gauss-
Newton method is an iterative scheme. In every iteration
n, we re-compute the Jacobian matrix J and the residual
vector r , and get a solution increment ∆G by solving the
update equations:

JTJ∆G = JT r

The above linear system is solved using LU decomposition.

VII. Qualitative Results

Tab. 9 shows the scores for the elephant and dragon
examples from the main paper. Fig. 3 shows the qualita-
tive matching and registration results on 4DMatch. Tab. 10
shows the corresponding scores for results in Fig. 3. Fig. 4
shows the qualitative matching and registration results on
3DLoMatch.

elephant dragon
EPE↓ Acc5↑ Acc10↑ EPE↓ Acc5↑ Acc10↑

N-ICP 0.166 22.4 41.5 0.325 4.5 17.8
Predator [2] + N-ICP 0.092 55.7 66.0 0.514 29.6 32.1
Ours + N-ICP 0.018 90.6 98.0 0.038 68.0 96.0

Table 9. Quantitative non-rigid registration results. The metrics
are 3D end point error (EPE) and motion estimation accuracy
(Acc) (<0.05m or 5%, <0.1m or 10%).

moose mutant
EPE↓ Acc5↑ Acc10↑ EPE↓ Acc5↑ Acc10↑

N-ICP 0.728 0.1 0.7 0.52 0.0 0.6
Predator [2] + N-ICP 0.0283 86.9 99.4 0.217 44.6 60.1
Ours + N-ICP 0.0263 88.5 99.9 0.119 62.6 71.4

Table 10. Quantitative non-rigid registration results. The met-
rics are 3D end point error (EPE) and motion estimation accuracy
(Acc) (<0.05m or 5%, <0.1m or 10%).
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Figure 3. Qualitative point cloud matching and registration results on 4DMatch. The inlier threshold is set to 4cm. The N-ICP-based
refinement can remedy outliers to a certain extent if the outlier matches are not too far away from the ground truth (see the results of
Predator + N-ICP in the Moose example). The N-ICP-based refinement can not handle outliers that connects distant parts. E.g. in the
Mutant example, left and right legs are registered together by both methods.



Figure 4. Qualitative point cloud matching and registration results on 3DLoMatch.
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