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In this document, we first present more ablative experi-
mental results for the spatial compactness prior (§1), long-
term dependence (§2) and the number of feature point sam-
pling (§3). Then, we show visual effects of the essential
components (§4) for more in-depth analysis. We further
offer additional qualitative video propagation results in §5.
Finally, we discuss the limitations (§6) and potential soci-
etal impacts (§7) of LIIR.

1. Analysis of Spatial Compactness Prior
We use M 2D Gaussian distributions to approximate the

affinity matrix A between two frames. Table 1 provides a
detailed analysis of the hyper-parameter M . The 1st row
corresponds to a baseline model that disregards the spatial
compactness prior in both training and inference phases.
We see from the table that 1) when M = 1 in training, the
model performs worse than the baseline model, as such a
rigorous matching constraint easily leads to overconfident
pre-dictions; 2) when M (in training) becomes larger, the
performance greatly improves; 3) the models trained with
M = 2 shows consistently better performance than those
trained with M = 3; and 4) in the inference stage, M = 2
always leads to the best performance. Accordingly, we set
M to 2 in both training and inference stages.

2. Analysis of Long-Term Dependence
LIIR leverages multiple reference frames during testing

as in [2]. We analysis the impact of long-term dependence
in Table 2. As seen, our method is more robust and shows
smaller drop wrt [2]: 4.7% vs 6.8%.

3. Analysis of Feature Point Sampling
We give the ablative study on the number of feature

points sampled during inter-video reconstruction in Table
3. It can be seen that, with 1440 frames, better results can
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DAVIS VIP# training stage inference stage J&Fm ↑ mIoU ↑
1 – – 69.8 39.6
2 M = 1 – 69.4 39.3
3 M = 1 M = 1 69.0 39.1
4 M = 1 M = 2 69.6 39.4
5 M = 1 M = 3 69.6 39.4
6 M = 2 – 71.5 40.8
7 M = 2 M = 1 71.2 40.4
8 M = 2 M = 2 72.1 41.2
9 M = 2 M = 3 71.9 41.2
10 M = 3 – 71.3 40.7
11 M = 3 M = 1 71.1 40.4
12 M = 3 M = 2 71.7 40.9
13 M = 3 M = 3 71.6 40.8

Table 1. Detailed analysis of M in spatial compactness prior on
DAVIS17 [4] val and VIP [6] val. “–”: without using spatial
compactness prior. See §1 for details.

Methods Reference Frame J&Fm

Ours I0, I5, It−5, It−3, It−1 72.1 → 67.4 (-4.7)
MAST[2] I0, I5, It−5, It−3, It−1 65.5 → 58.7 (-6.8)

Table 2. Analysis of long-term dependence of reference frames on
DAVIS17 [4] val. See §2 for details..

be achieved if we sample more points per frame (70.4→
71.4→72.1), supporting our claim about instance separa-
tion. With the same number of total sampled points, we
gain better performance if we consider more frames (70.9→
71.7→72.1). It is reasonable as more frames can provide
much rich/challenging context. With our limited GPU ca-
pacity, we choose to sample 1440 frames and four feature
points per frame, so as to maximize the performance. But
we can speculate that, if with enough GPU capacity, sam-
pling more features points from more videos will further
improve the performance.

4. Visualization of Ablation Study

Fig. 1 depicts visual effect of each essential component
in LIIR. Starting from the baseline model (b), we progres-

1



#Frames 1440 1440 1440 960 480
#Feature Points

4 2 1 6 12
Per-frame
J&Fm 72.1 71.4 (-0.7) 70.4 (-1.7) 71.7 (-0.4) 70.9 (-1.2)

Table 3. Ablative study on the number of feature points sampled
during inter-video reconstruction on DAVIS17 [4] val (see §3).

sively add position encoding (c), inter-video reconstruction
(d) and spatial compactness (e). As seen, with explicit posi-
tional encoding, our model is able to heavily suppress back-
ground regions (e.g., shelves in the first row). The inter-
video reconstruction enables more accurate discrimination
between targets and semantically similar distractors (e.g.,
“motorcycle” in the third row). Last, incorporating the spa-
tial compactness prior facilitates more precise correspon-
dences, leading to high-quality final segmentation results.

5. Additional Qualitative Results
We provide additional video propagation results on four

datasets, including DAVIS17 [4] val in Fig. 2, Youtube-
VOS[5] val in Fig.3, VIP[6] val in Fig.4 and JHMDB[1]
val in Fig. 5. We observe that even training with no anno-
tations, LIIR is able to produce highly exquisite results.

6. Limitation
Although LIIR demonstrates remarkable performance

and high generalizability in correspondence matching, we
still see a large performance gap between LIIR and cur-
rent top-leading supervised models (e.g., STM [3] in VOS).
However, as a self-supervised method, LIIR can be easily
scaled to leverage any available collection of video data
for training. This could lead to more accurate correspon-
dence learning from massive unlabeled data instead of us-
ing small-scale datasets only (e.g., DAVIS, YouTube-VOS).
Apart from that, inter-video reconstruction spares massive
space to bank the negative samples, this coerces the mem-
ory size of GPUs and extends the training time. Fortu-
nately, the performance of LIIR has improved by leaps and
bounds to compensate for it, for instance, up to 2.9% on
DAVIS17 [4]. Further more, note that the inter-video recon-
struction is only applied during training, thus it does not
introduce extra computational cost at inference. In our fu-
ture work, we will explore towards the above direction to
narrow the performance gap between supervised methods,
and find the way to reduce the memory space taken up by
negative videos and speed up training simultaneously.

7. Broader Impact
The method, LIIR, described in this paper can poten-

tially be harnessed to improve accuracy in any application
of computer vision where establishing accurate temporal
correspondence is crucial. Some applications, like patient

monitoring in hospitals, elderly care, online meeting in the
era of pandemic, are clearly beneficial to society. It can also
contribute to commercial affairs such as autonomous driv-
ing, augmented reality and movie production. In principle,
there is no ethical problem with the design purpose of LIIR.
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Figure 1. Visual effects of essential components in LIIR. (a) ground truth, (b) baseline, (c) b + position encoding, (d) c + inter-video
reconstruction, and (e) d + spatial compactness. See §4 for details.

Figure 2. More visualization results for video object segmentation on DAVIS17 [4] val.



Figure 3. More visualization results for video object segmentation on Youtube-VOS[5] val.

Figure 4. More visualization results for body part propagation on VIP [6] val.
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Figure 5. More visualization results for keypoint propagation on JHMDB [1] val.


