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Figure 1. Comparisons on (a) CIFAR100-LT, (b) ImageNet-LT with ResNet-50 and (c) iNaturalist 2018 of our proposed method and some

representative methods over many and few splits.

A. More Comparisons

Following previous works [, 7], the dataset can be di-
vided into many (with more than 100 images), medium
(with 20 ~ 100 images) and few (with less than 20 images)
splits. In this subsection, we further report the accuracies
on many, medium and few splits for detailed comparisons.
The comparisons on CIFAR100-LT and ImageNet-LT are
shown in Table 2 and Table 1, respectively. For iNatural-
ist 2018, its results of many, medium and few splits have
been reported in the article. As we can see, the proposed
method also outperforms all previous methods in all splits.
Moreover, compared with the baseline method BSCE, the
proposed method also can achieve comprehensive improve-
ments on all splits. It indicates that all categories can benefit
from the proposed NCL, where the knowledge transferring

is allowed over all categories. To better illustrate the superi-
ority of our proposed method, we visualize the performance
of our method and, as comparison some representative pre-
vious methods in terms of many and few splits for compar-
isons as shown in Fig. 1. It can be witnessed that the pro-
posed method achieves remarkable improvements on both
many and few splits, compared with previous methods.

B. Improvements on All Categories

In this section, we analyze the improvements on all cate-
gories over CAFAR100-LT and ImageNet-LT. We visualize
the accuracy on each category of the baseline model BSCE
and our proposed NCL as shown in Fig. 2. Some previous
methods [7, 11, 12] can improve the overall performance for
long-tailed visual recognition but mostly at the sacrifice of
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Figure 2. Detailed analysis of improvements on all categories on (a) CIFAR100-LT (IF=100) and (b) ImageNet-LT datasets. Due to
ImageNet-LT containing 1,000 categories, we report the average accuracy of every 10 adjacent categories for comparisons to avoid confu-
sion caused by too many histograms. The number of each category decreases as the category index increases. For example, category-0 and
category-99 have the largest and smallest number of training images in CIFAR100-LT dataset, respectively.

Method Ref ResNet-50 ResNeXt-50
’ Many Medium Few All Many Medium Few All

BBN [19] CVPR’20 - - - 48.3 - - - 49.3

NCM [7] ICLR’20 53.1 423 26.5 443 56.6 453 28.1 47.3

cRT [7] ICLR’20 58.8 44.0 26.1 47.3 61.8 46.2 27.4 49.6

T-norm [7] ICLR’20 56.6 442 27.4 46.7 59.1 46.9 30.7 494

LWS [7] ICLR’20 57.1 45.2 29.3 47.7 60.2 47.2 30.3 499

RIDE [14] ICLR’21 66.2 52.3 36.5 55.4 68.2 53.8 36.0 56.8

DisAlign [16] CVPR’21 61.3 52.2 314 529 62.7 52.1 314 53.4

DiVE [5] ICCv’21 64.1 50.4 31.5 53.1 - - - -

SSD [9] ICCv’21 - - - - 66.8 53.1 35.4 56.0

ACE [1] ICCcv’21 - - - 54.7 - - - 56.6

PaCo [3] ICCV’21 65.0 55.7 38.2 57.0 67.5 56.9 36.7 58.2

BSCE (baseline) - 66.1 51.9 34.6 53.9 66.8 51.1 34.4 53.6

Ours (single) - 69.0 54.0 36.1 574 70.4 54.9 37.0 58.4

Ours (ensemble) - 71.2 56.3 38.7 59.5 72.5 57.2 38.8 60.5

Table 1. Comparisons on ImageNet-LT dataset.
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