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1. Supplemental Video
We strongly recommend the reader to watch our sup-

plemental video, hosted at the project website: https:
//neural-3d-video.github.io/, to better judge
the photorealism of our approach at high resolution, which
cannot be represented well by the metrics.

The supplemental video includes:

• 3D video synthesis results on various dynamic scenes
including challenging dynamic topology change fast
motion, view-dependent effects such as specularity
and transparency, varying illuminations and shadows,
and volumetric effects such as steam and fire;

• A short presentation on the method (the DyNeRF rep-
resentation and the efficient training method);

• Video comparisons to baseline methods: NeRF-T,
DyNeRF-noIS, LLFF [4], NeuralVolume [3];

• Visualization of the estimated geometry (rendered as
depth maps);

• Slow-motion and bullet-time effects by our DyNeRF;

• More results on more challenging indoor scenes;

• Results on immersive video datasets [1];

• Demonstration of interactive playback of our 3D
videos in commodity VR headset Quest 2 using lay-
ered meshes distilled from our pretrained DyNeRF
model;

• Limitation of our results on more challenging outdoor
scenes.

2. Datasets
Details on the capture setup. We build a mobile multi-
view capture system using 21 GoPro Black Hero 7 cameras,
as shown in Fig. 2. For all results discussed in this paper, we
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capture videos using the linear camera mode at a resolution
of 2028×2704 (2.7K) and frame rate of 30FPS. The multi-
view inputs are synchronized by a timecode system, and the
camera intrinsic and extrinsic parameters are obtained by
COLMAP [6] and are kept the same throughout the capture.

Our collected data can provide sufficient synchronized
camera views for high quality 4D reconstruction of chal-
lenging dynamic objects and view-dependent effects in a
natural daily indoor environment, which did not exist in
public 4D datasets. Our captured data demonstrates a va-
riety of challenges for video synthesis, including objects
of high specularity, translucency and transparency. It also
contains scene changes and motions with changing topol-
ogy (poured liquid), self-cast moving shadows, volumetric
effects (fire flame), and an entangled moving object with
strong view-dependent effects (the torch gun and the pan),
various lighting conditions (daytime, night, spotlight from
the side), multiple people moving around in open living
room space with outdoor scenes seen through transparent
windows with relatively dark indoor illumination. We vi-
sualize one snapshot of the sequence in Fig. 1. Unless oth-
erwise stated, we use keyframes that are 30 frames apart.
In total, we trained our methods on a 60 second video se-
quence (flame salmon) in 6 chunks with each 10 seconds
in length, five other 10 seconds cooking videos captured
at different time with different motion and lighting, and
one 25 seconds video in indoor videos in 5 chunks. We
also trained a few additional videos of outdoor scenes in
chunks of 5 seconds with denser keyframes, which are 10
frames apart. In the end, we employ a subset of 18 cam-
era views for training, and 1 view for quantitative evalua-
tion for all datasets except one sequence observing multiple
people moving, which only uses 14 cameras views for train-
ing. We calculate a continuous interpolated spiral trajectory
based on the training camera views, which we employ for
qualitative novel view evaluation.

We found that the GoPro linear FOV mode sufficiently
well compensates for fisheye effects, thus we employ a pin-
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Figure 1. Frames from our captured multi-view video flame salmon sequence (top). We use 18 camera views for training (downsized on
the right), and held out the upper row center view of the rig as novel view for quantitative evaluation. We captured sequences at different
physical locations, time, and under varying illumination conditions. Our data shows a large variety of challenges in high quality wide angle
3D video synthesis.

Figure 2. Our multi-view capture setup using synchronized Go-
Pro Black Hero 7 cameras.

hole camera model for all our experiments. For all training,
we hold out the top center camera for testing, and use the
rest of the cameras for training. For each captured multi-
view sequence, we removed a particular camera if the time
synchronization did not work. We also notice there are
some inconsistent appearance in the some video streams
caused by different lighting sources observed from differ-
ent view angles, which we excluded in training.

Additional Immersive Videos from [1]. We also demon-
strate our method using the multi-view captured videos
from [1] which have been made publicly available recently.
Due to the time constraints, we train DyNeRF models indi-
vidually on a few 5s video clips from “Welder”, “Flames”,
and “Alexa Meade Face Paint” to validate our algorithm.

There are a few differences in their capture setup which
pose different opportunities and challenges to our method.
First, different from our captured linear camera videos
which are front-facing, their videos are captured on a half
spherical inside-out rig with heavy distortion in each view.
Second, their rig is composed of 46 cameras in each scene,
which contains more than two times more numbers of cam-
eras in training. Successfully training on this scene using
Dynerf requires us to compress a larger dynamic view space
and utilizing all training video pixels more efficiently. Dur-
ing training, we sample the rays directly from the raw res-
olutions of the distorted multi-view videos and render the
novel view video using a pinhole camera. We demonstrate
our algorithm can work on this type of data to create an
immersive 3D video experience without any change in the
representation.

3. Importance Sampling Schemes
Sampling Based on Global Median Maps (DyNeRF-
ISG). For each ground truth video, we first calculate the
global median value of each ray for all time stamps C(r) =
median

t∈T
C(t)(r) and cache the global median image. Dur-

ing training, we compare each frame to the global median
image and compute the residual. We choose a robust norm
of the residuals to balance the contrast of weight. The norm
measures the transformed values by a non-linear transfer
function ψ(·) that is parameterized by γ to adjust the sensi-
tivity at various ranges of variance:

W(t)(r) =
1

3

∥∥∥ψ (
C(t)(r)−C(r); γ

)∥∥∥
1
. (1)



Here, ψ(x; γ) = x2

x2+γ2 is the Geman-McLure robust func-
tion [2] applied element-wise. Intuitively, a larger γ will
lead to a high probability to sample the time-variant region,
and γ approaching zero will approximate uniform sampling.
C(r) is a representative image across time, which can also
take other forms such as a mean image. We empirically val-
idated that using a median image is more effective to handle
high frequency signal of moving regions across time, which
helps us to approach sharp results faster during training.

Sampling Based on Temporal Difference (DyNeRF-
IST). An alternative strategy, DyNeRF-IST, calculates the
residuals by considering two nearby frames in time ti and
tj . In each training iteration we load two frames within a
25-frame distance, |ti − tj | ≤ 25. In this strategy, we focus
on sampling the pixels with largest temporal difference. We
calculate the residuals between the two frames, averaged
over the 3 color channels

W(ti)(r) = min
(1
3

∥∥∥C(ti)(r)−C(tj)(r)
∥∥∥
1
, α

)
. (2)

To ensure that we do not sample pixels whose values
changed due to spurious artifacts, we clamp W(ti)(r) with
a lower-bound α, which is a hyper-parameter. Intuitively, a
small value of α would favor highly dynamic regions, while
a large value would assign similar importance to all rays.

Combined Method (DyNeRF-IS⋆). We empirically ob-
served that training DyNeRF-ISG with a high learning rate
leads to very quick recovery of dynamic detail, but results
in some jitter across time. On the other hand, training
DyNeRF-IST with a low learning rate produces a smooth
temporal sequence which is still somewhat blurry. Thus,
we combine the benefits of both methods in our final strat-
egy, DyNeRF-IS⋆, which first obtains sharp details via
DyNeRF-ISG and then smoothens the temporal motion via
DyNeRF-IST.

Training Details with the Important Sampling Schemes.
We apply global median map importance sampling
(DyNeRF-ISG) in both the keyframe training and full
video training stage, and subsequently refine with temporal
derivative importance sampling only for the full video. For
faster computation in DyNeRF-ISG we calculate temporal
median maps and pixel weights for each view at 1

4 th of the
resolution, and then upsample the median image map to the
input resolution. For γ in the Geman-McClure robust norm,
we set 1e−3 during keyframe training, and 2e−2 in the full
video training stage. Empirically, this samples the back-
ground more densely in the keyframe training stage than
for the following full video training. We also found out that
using importance sampling has a larger impact in the full
video training, as keyframes are highly different. We set

α = 0.1 in DyNeRF-IST. In the full video training stage we
first train for 250K iterations of DyNeRF-ISG with learning
rate 1e−4 and then for another 100K iterations of DyNeRF-
IST with learning rate 1e−5.

4. More Results
4.1. Details on Baseline Methods.

• Multi-View Stereo (MVS): We reconstruct the tex-
tured 3D meshes using commercial photogrammetry
software RealityCapture * and render the novel view
with from the textured 3D meshes frame-by-frame.
This baseline demonstrates the challenges using tradi-
tional geometry based approaches.

• Local Light Field Fusion (LLFF) [4]: LLFF is one
of the state-of-the-art Multiplane Images based meth-
ods tailored to front-facing scenes. We apply the pre-
trained network in LLFF to produce the multiplane im-
ages and render the novel views using default parame-
ters. To work with videos in our datasets, we produce
the novel view frame-by-frame by query the inputs at
each corresponding time.

• Neural Volumes (NV) [3]: NV is one of the state-of-
the-art learning based volumetric methods can gener-
ate novel view videos. We use the same training videos
and apply the default parameters to train the network.
We set the bounding volume according to the geome-
try of the scene. We use 1283 voxel grid for the RGBα
volume and 323 for the warping grid. It renders a novel
view image via ray marching a warped voxel grid at
each timestamps.

• NeRF-T: Refers to the version in Eq. 1. in the main
paper, which is a straight-forward temporal extension
of NeRF. We implement it following the details in [5],
with only one difference in the input. The input con-
catenates the original positionally-encoded location,
view direction, and time. We choose the positionally-
encoded bandwidth for the time variable to be 4 and
we do not find that increasing the bandwidth further
improves results.

• DyNeRF†: We compare to DyNeRF without our pro-
posed hierarchical training strategy and without impor-
tance sampling, i.e. this strategy uses per-frame latent
codes that are trained jointly from scratch.

• DyNeRF with varying hyper-parameters: We vary
the dimension of the employed latent codes (8, 64,
256, 1024, 8192). We also apply ablation stud-
ies on different versions of DyNeRF with important

*https://www.capturingreality.com/



Table 1. Quantitative comparison of our proposed method to
baselines of existing methods and radiance field baselines trained
at 200K iterations on a 10-second sequence. DyNeRF-IS⋆ uses
both sampling strategies (ISG and IST) and thus runs for more
iterations: 250K iterations of ISG, followed by 100K of IST; it is
shown here only for completeness.

Method PSNR ↑ MSE ↓ DSSIM ↓ LPIPS ↓ FLIP ↓

MVS 19.1213 0.01226 0.1116 0.2599 0.2542
NeuralVolumes 22.7975 0.00525 0.0618 0.2951 0.2049
LLFF 23.2388 0.00475 0.0762 0.2346 0.1867
NeRF-T 28.4487 0.00144 0.0228 0.1000 0.1415
DyNeRF† 28.4994 0.00143 0.0231 0.0985 0.1455
DyNeRF-ISG 29.4623 0.00113 0.0201 0.0854 0.1375
DyNeRF-IST 29.7161 0.00107 0.0197 0.0885 0.1340
DyNeRF-IS⋆ 29.5808 0.00110 0.0197 0.0832 0.1347

sampling methods: DyNeRF-ISG, DyNeRF-IST, and
DyNeRF-IS⋆.

4.2. Quantitative Comparison to the Baselines.

Tab. 1 shows the quantitative comparison of our meth-
ods to the baselines using an average of single frame met-
rics. We train all the neural radiance field based base-
lines and our method the same number of iterations for
fair comparison. Compared to the existing methods, MVS,
NeuralVolumes and LLFF, our method is able capture and
render significant more photo-realistic images, in all the
quantitative measures. Compared to the time-variant NeRF
baseline NeRF-T and our basic DyNeRF model without
our proposed training strategy (DyNeRF†), our DyNeRF
model variants trained with our proposed training strategy
perform significantly better in all metrics. DyNeRF-ISG
and DyNeRF-IST can both achieve high quantitative perfor-
mance, with DyNeRF-IST slightly more favorable in terms
of the metrics. Our complete strategy DyNeRF-IS⋆ requires
more iterations and is added to the table only for complete-
ness.

4.3. The Impact of Importance Sampling

In Fig. 3 we evaluate the effect of our importance sam-
pling strategies, DyNeRF-ISG, DyNeRF-IST and DyNeRF-
IS⋆, against a baseline DyNeRF-noIS that also employs
a hierarchical training strategy with latent codes initial-
ized from trained keyframes, but instead of selecting rays
based on importance, selects them at random like in stan-
dard NeRF [5]. The figure shows zoomed-in crops of
the dynamic region for better visibility. We clearly see
that all the importance sampling strategies manage to re-
cover the moving flame gun better than DyNeRF-noIS in
two times less iterations. At 100k iterations DyNeRF-ISG
and DyNeRF-IST look similar, though they converge dif-
ferently with DyNeRF-IST being blurrier in early itera-
tions and DyNeRF-ISG managing to recover moving de-

Table 2. Ablation studies on the latent code dimension on a
sequence of 60 consecutive frames. Codes of dimension 8 are in-
sufficient to capture sharp details, while codes of dimension 8,192
take too long to be processed by the network. We use 1,024 for
our experiments, which allows for high quality while converging
fast. *Note that with a code length of 8,192 we cannot fit the same
number of samples in the GPU memory as in the other cases, so
we report a score from a later iteration when roughly the same
number of samples have been used.

Dimension PSNR ↑ MSE ↓ DSSIM ↓ LPIPS ↓ FLIP ↓

8 26.4349 0.00228 0.0438 0.2623 0.1562
64 27.1651 0.00193 0.0401 0.2476 0.1653
256 27.3823 0.00184 0.0421 0.2669 0.1500
1,024 27.6286 0.00173 0.0408 0.2528 0.1556
8,192* 27.4100 0.00182 0.0348 0.1932 0.1616

Table 3. Comparison in model storage size of our method (DyN-
eRF) to alternative solutions. For HEVC, we use the default Go-
Pro 7 video codec. For JPEG, we employ a compression rate
that maintains the highest image quality. For NeRF, we use a
set of the original NeRF networks [5] reconstructed frame by
frame. For HEVC, PNG and JPEG, the required memory may vary
within a factor of 3 depending on the video appearance. For Neu-
ralVolumes (NV), it only accounts the neural network size without
counting its dependency on additional input streams. For NeRF,
NeuralVolume and DyNeRF, the required memory is constant. All
calculation are based on 10 seconds of 30 FPS videos captured by
18 cameras.

HEVC PNG JPEG NeRF NV DyNeRF

Size (MB) 1,406 21,600 3,143 1,080 773 28

tails slightly faster. The visualizations of the final results
upon convergence in Fig. 3 demonstrate the superior pho-
torealism that DyNeRF-IS⋆ achieves, as DyNeRF-noIS re-
mains much blurrier in comparison. We notice that without
importance sampling, the system cannot reach an accept-
able visual quality within extended training time, indicat-
ing the necessity of the importance sampling scheme. In
Fig. 4, we compare various settings of the dynamic neu-
ral radiance fields. NeRF-T can only capture a blurry mo-
tion representation, which loses all appearance details in the
moving regions and cannot capture view-dependent effects.
Though DyNeRF† has a similar quantitative performance
as NeRF-T, it has significantly improved visual quality in
the moving regions compared to NeRF-T, but still strug-
gles to recover the sharp appearance details. DyNeRF with
our proposed training strategy, DyNeRF-ISG, DyNeRF-IST
and DyNeRF-IS⋆, can recover sharp details in the moving
regions, including the torch gun and the flames.
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Figure 3. Comparison of importance sampling strategies over training iterations.

Comparisons on of Model Compression. Our model is
compact in terms of model size. In Tab. 3, we compare our
model DyNeRF to the alternatives in terms of storage size.
Compared to the raw videos stored in different images, e.g.,
PNG or JPEG, our representation is more than two orders
of magnitude smaller. Compared to a highly compact 2D
video codec (HEVC), which is used as the default video
codec for the GoPro camera, our model is still 50 times
smaller. It is worth noting that these compressed 2D rep-
resentations do not provide a 6D continuous representation

as we do. Though NeRF is a compact model for a single
static frame, representing the whole captured video without
dropping frames requires a stack of frame-by-frame recon-
structed NeRF networks, which is more than 30 times larger
in size compared to our single DyNeRF model. Compared
to the convolutional model used in NeuralVolume, DyN-
eRF is more compact in size and can represent the dynamic
scene with better quality.
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Figure 4. Qualitative comparisons of DyNeRF variants on one image of the sequence whose averages are reported in Tab. 1. From left
to right we show the rendering by each method, then zoom onto the moving flame gun, then visualize DSSIM and FLIP for this region
using the viridis colormap (dark blue is 0, yellow is 1, lower is better). The three hierarchical DyNeRF variants outperform these baselines:
DyNeRF-ISG has sharper details than DyNeRF-IST, but DyNeRF-IST recovers more of the flame, while DyNeRF⋆ combines both of these
benefits.

Impact of Latent Embedding Size on DyNeRF We run
an ablation on latent code length on 60 continuous frames
and present the results in Table 2. In this experiment, we do
not include keyframe training or importance sampling. We
ran the experiments until 300K iterations, which is when
most models are starting to converge in rendering quali-
ties. Note that with a code length of 8,192 we cannot fit

the same number of samples in the GPU memory as in the
other cases, so we report a score from a later iteration when
roughly the same number of samples have been used. We
use 4× 16GB GPUs and network width 256 for the experi-
ments with this short sequence. From the metrics we clearly
conclude that a code of length 8 is insufficient to repre-
sent the dynamic scene well. Moreover, we have visually



observed that results with such a short code are typically
blurry. With increasing latent code size, the performance
also increases respectively, which however saturates at a di-
mension of 1024. A latent code size of 8192 has longer
training time per iteration. Taking the capacity and speed
jointly into consideration, we choose 1024 as our default
latent code size for all the sequences in this paper and the
supplementary video.

Additional Discussions on the Latent Codes Besides
all the above findings, we also observe some failure cases
to manipulate the latent codes. Extrapolating the latent
codes in time cannot directly create high quality extrapo-
lated views. We have extensively investigated latent code
optimization with various combinations of parameter learn-
ability for latent codes (keyframe / remaining frames) and
the network. With frozen keyframe latent codes, we observe
blurrier results than the all-learnable case. Therefore learn-
ing both latent codes (keyframe / remaining frames) and the
network is necessary for producing sharp and high-quality
renderings.

View-dependent Effects in Dark Indoor Scenes. DyN-
eRF can represent view-dependent effects as well as mo-
tion in one continuous representation. When input cameras
streams have slightly different appearance differences in ob-
servation, we find DyNeRF will model this difference as
part of the view-dependent effects when generating novel
views. We can observe this artifact in all of our dark indoor
scenes where there are more obvious color inconsistency
from wide-angle input video streams. Incorporating more
careful color calibration and learning color calibration may
address this problem, which we leave for future work.

3D Video Editing via Manipulating the Latent Codes
DyNeRF represents a continuous spatial-temporal dynamic
scene which supports rendering any view within the inter-
polation boundary of space and time. We can create a la-
tent code at a sub-frame time via interpolation and render

a “slow motion” 3D video with any given FPS rate. DyN-
eRF can enable smooth interpolation from 30fps to 60fps or
even 150fps. Furthermore our method can render “bullet-
time” effect by by freezing the latent code at any arbitrary
time and manipulating camera views in space. We include
the video effects of “slow motion“ and “bullet-time“ from
arbitrary time in our supplementary videos.

Rendering Time The rendering time of our dynamic neu-
ral radiance fields is on par with NeRF due to the structural
similarity of the approaches. Our current, not fully opti-
mized version achieves a rendering time of 45 seconds for
one 1080p frame using two V-100 GPUs with 16 GB mem-
ory.
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