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1. Implementation Details

Network architecture In Fig. 1, we show the detail structure of our three MLPs : (a) specularity basis modeling SΦ; (b)

surface modeling MΘ, (c) depth modeling ZΨ. The design of these structures are inspired by a recent work NeRF [7].
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Figure 1. Network architecture of our three MLPs: SΦ,MΘ, ZΨ. In this figure, inputs of the network are shown in the green blocks;

outputs are shown in the red blocks. The blue blocks represent the fully-connected layers with its size of the hidden channels stated on the

top. All fully-connected layers are followed by a ReLU activation layer, except the output layers. The “⊕” in the middle of the MΘ, ZΨ

network denotes the vector concatenation: we add a skip connection after the fourth layer of MΘ, ZΨ, and concatenate its output features

with the input.
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Positional encoding of input of MΘ and ZΨ The inputs of surface modeling MΘ and depth modeling ZΨ are the pixel

coordinates x. We adopt the positional encoding strategy [7] to embed the input coordinates x ∈ R
2 into a higher space

x ∈ R
4m:

γ(ξ) = ( sin(20πξ), cos(20πξ), · · · , sin(2m−1πξ), cos(2m−1πξ)). (1)

In practice, we first normalized the coordinates to range (−1, 1), then apply the above encoding function with m = 10 to

each of the two coordinate values in x. Then, we concatenate the coordinate and its embeddings as (x, γ(x)) to be the input

of the two MLPs.

Color mean and variation for MΘ albedo estimation Since the albedo estimation of an object surface exists an ambigu-

ities in its scales. We compute the mean value and variation value cm, cv of the images and concatenate them to the input of

MΘ for albedo estimation.

Positional encoding of input of SΦ Rusinkiewicz [9] reparameterized the BRDF as a function of the half-vector h (i.e.

the half-vector between lighting and viewing direction). This half-vector-based parameterization is further evaluated and

discussed by [2, 8], where they found that a simplified isotropic BRDF can be modeled in two parameters (θh, θd), where

θh = arccos(nT
h), θd = arccos(vT

h). In our method, we take the cosine value of these two variables as the input:

p = (nT
h,vT

h). (2)

Then, the input p is further encoded by γ(p) with m = 3. Likewise, we concatenate p and its embeddings as (p, γ(p)) to

be the input of the specularity basis modeling SΦ.

2. Additional ablation study

In this section, we compare a variant of our surface modeling network MΘ. The original model we use in the paper is

denoted as the baseline. The equation for baseline surface modeling (i.e. the one used in main paper) is: n, ρd, c = MΘ(x).
Surface Modeling Variant 1: directly output depth, diffuse albedo and specular weights rather than outputting normals.

z, ρd, c = M1

Θ(x), (3)

Table 1. Quantitative comparison on different variants of surface modeling. The metric here is MAE; lower is preferred. Below, we present

the average MAE of ten objects in DiLiGenT.

Methods Avg.

Baseline 6.50

Variant 1 7.56

Our experiments in Table 1 show that the baseline model (outputting normals, albedo and specular weights by a single

network) has the best performance. Our analysis is that: Comparing to Variant 1: The surface normal is closely related to the

photometric appearance of an object. By directly outputting normal, our baseline network can achieve a lower photometric

appearance (reconstruction) loss. If we directly output depth, we need to apply an additional step to compute the finite dif-

ference to get normal. Hence, directly outputting normal will help the training of the network to minimize the reconstruction

loss.



3. Evaluation on re-rendered images

Quantitatively evaluation We re-rendered the observed image with our estimated reflectances, and ground truth lights.

We compare our re-rendered images with ACLS [1]. Note that ACLS’s BRDF fitting results are provided by Shi et al. [10],

where the calibrated lightings, and the ground truth normal are used when fitting the BRDF. In comparison, our method only

takes the calibrated lightings at the input. The results are shown in Tab. 2. Our method achieves better reconstruction results

on average. Our method performs particularly well on shiny objects and objects with variously materials, such as “cow”,

“goblet”, “harvest”, and “reading”. Visual comparisons are shown in Fig. 2.

Table 2. Quantitative comparison on the re-rendered images with our estimated BRDF. The metric here is peak signal-to-noise ratio

(PSNR); higher is preferred.

ball bear buddha cat cow goblet harvest pot1 pot2 reading Average

ACLS [1] 40.27 46.75 40.27 46.87 44.35 42.67 33.90 51.55 52.06 30.60 42.93

Ours 37.82 47.96 41.14 46.31 45.85 43.56 36.24 51.40 52.36 31.58 43.42

Original Image Ours ACLS

Reading

Cow

Harvest

Figure 2. Re-rendered image by our method and ACLS [1]. From left to right, we showcase the original image, the re-rendered image

using our estimated neural svBRDFs, and the re-rendered image by ACLS [1], respectively. Our method performs well on the specularities

on “Reading”, while ACLS failed to recover these highlights. Our method is also able to recover the spatially-varying materials, see the

“Cow” and “Harvest”, while ACLS failed to recover various materials on surfaces.



4. Material editing

Our method opens up the possibilities to edit materials of objects. In the following figures, we select some surface points

from the observed images and use the estimate reflectance (svBRDF) to re-render several new objects.

A B C D

A

B

C

D

Figure 3. Visualization on the estimated svBRDFs. This figure shows the estimated svBRDFs of the surface points on the objects. On

the left is the observed image of “Reading”. We select four different surface points on the object and showcase our re-rendered BRDF

spheres of those points on the right side. For better visualization, we normalize the BRDF spheres to have the maximum intensity to be 1.

The observed images are also scaled up for visualization.

Observed Images Re-rendered images using the material from Red points

Figure 4. Material editing. For each row, the left-most images are the observed images from DiLiGenT dataset. We use the estimated

reflectance from the red points denoted in the left-most images to re-render several objects and present them on the right.



5. BRDF evaluation on synthetic dataset.

In this section, we evaluate our method on a publicly available synthetic dataset1 proposed by Chen et al [5]. The dataset

was rendered using the physically-based raytracer Mitsuba with MERL [6] as the BRDFs. We showcase our results on

“Armadillo” with “alum-bronze” as the material in Fig. 5. From the result, even if the shape is as complicated as “Armadilla”,

our method can still recover the normals very well (with MAE 3.60◦). We further plot a slice of our estimated BRDF curve

and the ground truth BRDF curve in the right of Fig. 5. We can see that our estimated BRDF is very close to the ground truth

BRDF, which demonstrates that our method is robust in material recovery.
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Figure 5. From left to right, we showcase the estimated normal, error map, and our recovered slice of BRDF curve of “Armadillo” with

“alum-bronze” as the material.

6. Additional Results

Additional Results on Normal Estimation In Fig. 6, we present the normal estimation results on three specular objects:

“Goblet”, “Reading” and “Harvest” from DiLiGenT [10]. These results demonstrate that our method is taking advantage of

the information that the specularities provide. Hence, we can estimate the normal accurately on specular regions.

Visualization on each terms of the rendering equation Recall the rendering equation (Eq.(1) in the main paper) is defined

by

I = sρ(l,v,n)max(lTn, 0), ρ(l,v,n) = ρd + ρs, (4)

where ρd is the diffuse albedo; ρs is the specularities; s is the shadows; max(lTn, 0) is the shading term. In Fig. 7, we present

the visualization of our estimation on these terms.

Additional Results on Shadows Estimation In Fig. 8, we showcase the estimated shadows and specularities under differ-

ent light directions.

Additional Results on Other Real-world Dataset We also test our method on two other challenging real-world datasets:

Gourd&Apple dataset [1] and Light Stage Data Gallery [3], as shown in Fig. 9 and Fig. 10 separately. Both of these two

datasets do not provide ground truth normal for evaluation. Hence, we provide the visualization of the estimated normal,

diffuse albedo, and specular map on these datasets. Our method correctly recovers the shape and materials of different

objects. It also demonstrates that our method is robust on different objects with different materials.

7. Ethics Statement

With the advancement of photometric stereo, anyone can easily capture the 3D shape of a person’s face. The inverse

rendering technique allows the user to alter the shape and appearance of an individual’s face. The acquisition and alteration

of such personal information, if without their consent, may lead to privacy and security breaching. Care must be taken to

mitigate the potential risk of abusing this technique.

1https://github.com/guanyingc/UPS-GCNet
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Figure 6. Normal estimation on specular objects: “Goblet”, “Reading” and “Harvest”. As shown in the observed image of these three

objects, the “Goblet” is mostly made of metallic materials; “Reading” and “Harvest” present many specular effects over the clothes. Our

method achieves the best performance in all these three objects, especially in those regions with high specularities. Please look at the red

windows in the error map. “Reading” contains many specularities over its cloth and its head. While all the other methods suffer on these

specularities, our method still performs well in these regions, especially on the head. The cloth of “Harvest” in the center also presents

significant specular effects. While the other self-supervised method TM18 [11] failed on these regions, our method correctly recover the

surface normal. These results demonstrate that our method is taking advantage of the information that the specularities provide. Hence, we

can estimate the normal accurately on specular regions.
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Light directions

Observed Images

Shadows in different directions

in different directions

GT Normal

Est. Normal

Est. Depth

(a) Cow

Light directions

Observed Images

Shadows in different directions

in different directions

GT Normal

Est. Normal

Est. Depth

(b) Harvest

Figure 8. Estimated specularities and shadows under different illuminations. The leftmost column presents the ground truth normal

and our estimated normal and depth as a reference of the object’s geometry. We show the estimated specular components ρs and estimated

shadows under three different extreme lighting directions in the right-three columns. In “Cow”, the object is generally smooth, and our

estimation of the shadows also visually match the observed images. “Harvest” has a complex geometry and consists of many depth

discontinuities over the surface. As discussed in the Sec. 6 of the main paper, our method is influenced by these regions and will generate

a “shallower” depth map. Hence, the estimated shadows are generally under-estimated.
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Observed Image Est. Normal (Diffuse Albedo) (Specularities)

Figure 10. Results on Light Stage Data Gallery [3]. The columns from left to right are the observed images, our estimated normal,

diffuse albedo, and specularities of the objects.


