
Appendix for OmniFusion: 360 Monocular Depth Estimation via
Geometry-Aware Fusion

Figure 1. The illustration of the gnomonic projection. A point
Ps(λ, ϕ) located on the spherical sphere is projected onto a point
Pt(xt, yt) on the flat plane which is tangent to a point Pc(λc, ϕc).

A. Gnomonic projection

We use the distortion-free tangent image representation
to address the irregular 360 image distortion. Tangent im-
age is the gnomonic projection of a sphere surface onto a
flat, rectangular plane surface. The gnomonic projection [3]
(Figure 1) is a map projection obtained by projecting points
Ps on the surface of sphere from a sphere’s center O to point
Pt in a plane that is tangent to a point Pc.

For a pixel on the ERP image Pe(xe, ye), we first find its
corresponding point Ps(λ, ϕ) locating on the unit sphere.

λ =
2πxe

W
, ϕ =

πye
H

(1)

where H and W are height and width of the ERP image.
The projection from Ps(λ, ϕ) to Pt(xt, yt) is defined as:

xt =
cos(ϕ)sin(λ− λc)

cos(c)

yt =
cos(ϕc)sin(ϕ)− sin(ϕc)cos(ϕ)cos(λ− λc)

cos(c)

cos(c) = sin(ϕc)sin(ϕ) + cos(ϕc)cos(ϕ)cos(λ− λc)
(2)

where (λc, ϕc) are the spherical coordinates of the tangent
plane center Ps.

The inverse gnomonic transformations are:

λ = λc + tan−1(
xt sin(c)

γ cos(ϕ1)cos(c)− yt sin(ϕc)sin(c)
)

ϕ = sin−1(cos(c)sin(ϕc) +
1

γ
ytsin(c)cos(ϕc))

(3)
where γ =

√
x2
t + y2t and c = tan−1γ.

With Equation 2 and 3, we can build one-to-one forward
and inverse mapping functions between pixels on the ERP
image and pixels on the tangent image.

B. Geometry-aware feature fusion
As the geometry-aware feature fusion module is one of

the major innovations of our paper, in this section we pro-
vide more detailed illustrations. As shown in Figure 2, more
intermediate representations involved in the module is visu-
alized. Specifically, the patch-wise 2D image features and
the patch-wise geometric features are visualized separately,
along with the feature maps after fusion, in which the mean
value of each feature is shown. For visual comparison, the
patch-wise features before Figure 2 (b) and after fusion (c)
are projected and merged into two ERP feature maps. As
observed, the fused feature maps inherit more locally con-
sistent structures, which is expected to lead to more locally
consistent depth results. It is worth mentioning that patch-
wise geometric features are fixed once learned when the in-
puts are just based on the spherical coordinates with fixed ρ,
and independent from the image. This means no extra com-
putation in inference is needed for the first iteration. While
for the second iteration, since ρ depends on the input im-
age, new geometric features need to be re-computed, but
the MLPs are super light-weight compared to the original
CNNs.

The intuition behind the geometry-aware fusion design
can be visualized in high-dimensional feature space, see
Figure 3. Based on the Equation 2, a single point from
the ERP space, P i

s(λ
i, ϕi, ρi), is projected to two tangent

images centered at (λj
c, ϕ

j
c) and (λk

c , ϕ
k
c ), and appear at

(xj
t , y

j
t ) and (xk

t , y
k
t ), respectively. As observed, differ-

ent appearances at the two points can lead to different im-
age features encoded from the shared CNN kernel, which
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Figure 2. (a) Detailed pipeline of geometry-aware feature fusion. A set of tangent images are encoded into a set of image feature maps,
while the 3D coordinates are encoded and converted into a set of geometric feature maps. The patch-wise 2D image features are fused with
the patch-wise geometric feature. (b) The merged ERP feature map of patch features without the geometric fusion. (c) The merged ERP
feature map of patch features with the geometric fusion. Comparing to the merged ERP feature maps without geometric fusion in (b), the
geometry-aware fused ERP feature map in (c) appears to be more locally consistent.

Figure 3. A more intuitive view of geometry-aware feature fusion. Based on the gnomonic geometry, a single point from the ERP space,
P i
s(λ

i, ϕi, ρi) is projected to two tangent images centered at (λj
c, ϕ

j
c) and (λk

c , ϕ
k
c ), and appear at two different pixels (xj

t , y
j
t ) and (xk

t , y
k
t ),

respectively. Image features located at the two pixels can be visualized in high-dimensional vectors (solid green and red arrows in the right
panel, respectively). Since the discrepancy is caused by the gnomonic transformation from (Ps, λc, ϕc), we utilize geometric features
encoded from (Ps, λc, ϕc) to compensate for the discrepancy (dashed arrows).

can be visualized as high-dimensional vectors (solid green
and red arrows on the right panel). Such difference in
the 2D features will make the merged results appear to
be locally inconsistent. Since the discrepancy is caused
by the gnomonic transformation from (Ps, λc, ϕc), we be-
lieve a point-encoding model can learn a geometric embed-
ding space out of (Ps, λc, ϕc) to mitigate the discrepancy
(dashed arrows). While Ps makes the embedding to be
aware of the global position, (λc, ϕc) differentiates between
patches to enable the compensation.

C. Transformer Architecture and Ablation
Study

The architecture of the multi-head attention transformer
follows [8]:

z0 = [x1E, x2E, ..., xNE] + Epos,

z′l = Norm(MSA(zl−1, z0) + zl−1),

zl = Norm(FFN(z′l) + z′l),

(4)



Configurations #Params Abs Rel↓ Sq Rel ↓ RMSE↓ RMSE(log)↓ δ1δ1δ1 ↑ δ2δ2δ2 ↑ δ3δ3δ3 ↑
depth = 2, num of heads = 2 19M 0.1091 0.0614 0.3885 0.1782 0.8738 0.9670 0.9891
depth = 4, num of heads = 4 24M 0.1016 0.0583 0.3796 0.1774 0.8867 0.9688 0.9885
depth = 6, num of heads = 4 32M 0.1026 0.0572 0.3883 0.1753 0.8893 0.9689 0.9892
depth = 8, num of heads = 8 38M 0.1044 0.0596 0.3926 0.1819 0.8739 0.9650 0.9873

Table 1. The ablation study of the transformer configurations. We use ResNet18 as encoder for all experiments.

where Norm represents layer normalization, l = 1, ..., L is
the index of the transformer block. The multi-headed self-
attention (MSA) is computed as:

MSA(X) = concatHh=1[Attnh(X)]W

Attnh(X) = softmax(
QKT

√
dh

)V

Q = XWQ, K = XWK , , V = XWV

(5)

where Q,K, V correspond to query, key, value matrix, re-
spectively. h denotes the number of heads. We reshape the
transformer output, then use another 1×1 convolution layer
to increase feature dimension, and add the encoder output as
residual.

An ablation study on the transformer depth and the num-
ber of heads is shown in Table 1. The ablation study here is
conducted based on ResNet18, not the ResNet34 used in our
final pipeline, in order to conduct the experiments more ef-
ficiently. The number of parameters shown in the table con-
siders the entire network rather than the transformer mod-
ule alone. We chose 6 transformer blocks (depth=6) and a
number of 4 heads (number of heads=4) as the default con-
figuration, as this configuration tends to have fewer errors
and higher inlier ratios.

D. Loss Function
Our network is trained in an end-to-end fashion. We

adopt BerHu loss [6] for optimizing depth predictions of
all iterations.

Ldepth =

{
|∆D|, |∆D| ≤ c

∆D2+c2

2c , |∆D| > c
(6)

where ∆D = |Dgt − De| ∗ M is the absolute difference
of ground truth depth Dgt and the predicted depth De. M
is a binary mask that mask out invalid depth pixels. c is a
border value defined as the 20% of the maximum per batch
residual c = 0.2max(∆D).

The final loss term is the combination of losses from all
iterations:

Ltotal =
∑
i

Ldepth (7)

E. Generalization
We conducted a cross-dataset evaluation and summa-

rized the results in Table 2. All methods in the table are

trained on Matterport3D [2] training set and evaluated on
Stanford2D3D [1] test set. We used the official pre-trained
models and the evaluation code provided by UniFuse [5]
and HoHoNet [7] for a fair comparison. As observed, our
method showed superior generalization ability compared to
these state-of-the-arts methods.

Methods Abs Rel↓ Sq Rel↓ RMSE↓
UniFuse [5] 0.1192 0.0813 0.4291
HoHoNet [7] 0.1083 0.0755 0.4166

OmniFusion, Ours 0.1044 0.0620 0.3781

Table 2. Cross-dataset evaluation.

F. Additional qualitative comparisons
Besides the qualitative comparison between our method

and the baseline method tailored from [4], we also extend
to qualitatively compare our method with current state-of-
the-art methods, HoHoNet [7] and UniFuse [5] on three
datasets: Stanford2D3D [1], Matterport3D [2], and 360D
[9]. The results are shown in Figure 4, 5, 6, respectively. We
use the pretrained models downloaded from their official
GitHub repositories, respectively. 1 2 Note that the results
from HoHoNet [7] are not included in Figure 6 because
they have not reported results or releases code on 360D [9]
dataset. Figure 7 shows additional qualitative results of our
OmniFusion on Matterport3D [2] besides what have been
provided on Stanford2D3D [1] in the main paper. All of
these comparisons clearly show that our method recovers
more structural details in the final depth maps, maintains
sharp edges, smooth surfaces, and exhibits fewer errors.
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Figure 4. The qualitative comparisons with the current state-of-the-art works on the dataset Stanford2D3D [1]. We show the results of
HoHoNet [7] (second column), UniFuse [5] (third column), and ours (last column). Both the depth maps and the error maps against the
ground-truth are included for comparison. See the zoomed-in areas for detailed comparisons.

Figure 5. The qualitative comparisons with current state-of-the-art works on the dataset Matterport3D [2]. We show the results of HoHoNet
[7] (second column), UniFuse [5] (third column), and ours (last column). Both the depth maps and the error maps against the ground-truth
are included for comparison. See the zoomed-in areas for detailed comparisons.

[4] Marc Eder, Mykhailo Shvets, John Lim, and Jan-Michael
Frahm. Tangent images for mitigating spherical distortion.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12426–12434, 2020. 3

[5] Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui
Huang. Unifuse: Unidirectional fusion for 360◦ panorama
depth estimation. IEEE Robotics and Automation Letters,
2021. 3, 4, 5

[6] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 2016 Fourth
international conference on 3D vision (3DV), pages 239–248.
IEEE, 2016. 3

[7] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet: 360
indoor holistic understanding with latent horizontal features.

In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2573–2582, 2021. 3, 4

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2

[9] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, and
Petros Daras. Omnidepth: Dense depth estimation for indoors
spherical panoramas. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 448–465, 2018. 3,
5



Figure 6. The qualitative comparisons with current state-of-the-art works on the dataset 360D [9], We show the results of UniFuse [5]
(second column), and ours (last column). Both the depth maps and the error maps against the ground-truth are included for comparison.
See the zoomed-in areas for detailed comparisons.

Figure 7. More qualitative results of OmniFusion on Matterport3D [2].


