A. Implementation Details

In nuScenes, annotations are created every 0.5s, we fol-
low the common practice [3, 35, 36] to transform the Li-
dar points of non-annotated frames into their following an-
notated frames to generate denser point clouds, which im-
proves our model by 2.3% PQ on nuScenes validation. For
data augmentation, we use global scaling with a random
factor within [0.95, 1.05], global rotation with a random
factor within [—7/2, 7/2] and random flipping along both
X and Y axes of the LiDAR coordinate on both datasets. As
mentioned in our paper, we also use copy-paste data aug-
mentation scheme from [35] on SemanticKITTTI to alleviate
the distribution imbalance among categories.

Our model is trained with a total batch size of 16 on 8
RTX3090 GPUs. To save computation, we train the model
for 40 epochs following [4 1] for semantic segmentation and
then train the instance branch for another 20 epochs. All the
submissions and ablation experiments are conducted with
the same setting.

For our test-time-augmentation version, we follow [36]
to apply flip testing, which improves PQ by 0.3% on
nuScenes validation. We ensemble five models with inputs
of 3D cylindrical size from [240, 180, 32] to [576, 448, 32],
which further improves PQ by 1.2%. Note that we only use
our single model without any TTA techniques for all the
comparisons in our paper, the TTA version is just for ref-
erence considering some of methods incorporate TTA. Our
single-model version achieves the 1st place on the public
leaderboard of SemanticKITTI.

Regarding the hyper-parameters of the center grouping
module, we calculate the average size for different cate-
gories with corresponding 3D bounding box annotations on
KITTI [12] and nuScenes respectively. For a certain thing
category with the average size [width, length, height], we
assign it a radius » = min(width, length).

For supervision signals, voxel-wise losses are adopted
for both semantic and instance branches. We obtain voxel-
wise semantic labels by majority-voting and use the mean
offsets of points as the voxel-wise offset labels. We use
centers of axis-aligned bounding boxes as instance centers
to train the offsets, which is explained later.

B. Discussion

Pseudo Heatmap vs. Learned Heatmap. We com-
pare our clustering pseudo heatmap (PHM) with the learned
heatmap (LHM) adopted in Panoptic-PolarNet [40]. We
follow [40] to train a heatmap head (with their post-
processing) in our framework. Tab. 6 shows our PHM out-
performs LHM on both datasets, especially on nuScenes
(+6.8% PQ™). For LHM, there may be inconsistencies in
terms of quantity and location between the predicted centers
and the clusters of shifted thing points. In crowded scenes

Figure 8. Qualitative example on SemanticKITTI. The left three
images are the front view image, panoptic segmentation result and
shifted thing points. The right image is the corresponding BEV
clustering pseudo heatmap.

(commonly seen in nuScenes, while few in semanticKITTI
validation), such inconsistency issue has more impacts.
Note that the mIoU drops from 77.5 to 67.4 after being re-
fined by LHM centers on nuScenes. It’s a strong evidence
that LHM is quite inaccurate. On the contrary, our PHM
is created from the projection of the shifted thing points,
where highlights show up certainly as long as there are clus-
tered ones, as illustrated in Fig. 8, so that object-level high
recall is achieved. It should be noted that the more accurate
the offset regression is, the sparser the clustering pseudo
heatmap becomes. As a result, our PHM performs much
better on nuScenes.

Dataset Method PQ PQ™ mloU  mloU*
LHM 61.1 679 652  65.1
sem.KITTL  piinours) 617 69.3(+1.4) 652  65.1
LHM 69.1 65.7 674 715
nuScenes

PHM (ours) 734 72.5(+6.8) 775 71.5

Table 6. Pseodo heatmap vs. learned heatmap. (mloU*: original
semantic results. mloU: the semantic results refined by instance
IDs)

One more thing, a possible weakness of PHM is that
there may be multiple center predictions for one object as
the shifted thing points are not concentrated enough. For-
tunately, our proposed center grouping module provides a
effective solution.

Choice of Instance Center. There are two types of in-
stance center used in previous researches as the supervi-
sion signals of offset regression, i.e., the mass center [40]
and the axis-aligned center [14]. In addition, since there
are 3D bounding box annotations in nuScenes as exter-
nal data, the centers of bounding boxes can also be taken
as instance centers. We conduct contrast experiments on



both SemanticKITTI and nuScnes datasets for these three
choices. As shown in Tab. 7, the difference between the
mass center and the axis-aligned center is not obvious on
SemanticKITTI. On nuScenes, however, the axis-align cen-
ter outperforms the mass center by 2.1% PQ, and the an-
notated center only further improves PQ by 0.1%. It is
clear that the annotated center is most beneficial to offset
regression due to the highest consistency. Since we do not
use external data on nuScenes for comparisons, we adopt
axis-aligned center as the final choice. The different re-
sults on the two datasets lie in the fact that there are plenty
of crowded scenes with more dynamic object instances in
nuScenes, where the choice of higher consistent centers per-
forms better.

Dadaset Mass Axis-aligned Annotated
SemanticKITTI  61.6 61.7 -
nuScenes 72.6 74.7 74.8

Table 7. PQ results with different choices of instance center labels
on SemanticKITTI and nuScenes validation.

C. Qualitative Results

We show the visualization examples of our Panoptic-
PHNet on SemanticKITTI in Fig. 9, as well as on nuScenes
in Fig. 10 and Fig. 11. We use the official color map for stuff’
regions and random colors for instance IDs. For nuScenes,
we also project panoptic segmentation results onto the front
view images. It can be observed that our approach performs
well not only for crowded scenes, but also for big objects,
which are the focuses of our paper while often ignored in
previous studies. Specifically, as shown in the bottom im-
age of Fig. 10, a group of close persons are correctly seg-
mented thanks to our high-quality offset regression and ef-
ficient clustering pseudo heatmap.

D. Performance across Classes

We show the detailed class-wise results of our Panoptic-
PHNet on SemanticKITTI and nuScenes in Tab. 8, Tab. 9
and Tab. 10.
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Figure 9. Qualitative examples on SemanticKITTI. The top two examples show the performance of our method in crowded scenes. The
bottom example focuses on the big object segmentation.



Figure 10. Qualitative examples on nuScenes. The two examples show a driving scene and a group of crowded people respectively.



Figure 11. Qualitative examples on nuScenes, including small objects that are close to each other (rowl), big objects (row2), as well as
cloudy and rainy day (row3).
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