
Appendix

A. Implementation Details

A.1. Panoptic SegFormer.

Our settings mainly follow DETR [1] and Deformable
DETR [2] for simplicity. The hyper-parameters in de-
formable attention are the same as Deformable DETR [2].
We use Channel Mapper [2, 3] to map dimensions of the
backbone’s outputs to 256. The location decoder contains 6
deformable attention layers, and the mask decoder contains
6 vanilla cross-attention layers [4]. The spatial positional
encoding is the commonly used fixed absolute encoding
that is the same as DETR. The window size of Swin-L [5]
we used is 7. Since we equally treat each query. λthings

and λstuff are dynamically adjusted according to the rela-
tive proportion of things and stuff in each image, and their
sum is 1. λcls, λseg, and λdet in ?? are set to 2, 1, 1, respec-
tively.

During the training phase, the predicted masks that be
assigned ∅ will have a weight of zero in computing Lseg .
While using the mass center of instance to replace the
bounding box, we only use L1 loss to supervise the mass
center of predicted mask and mass center of ground truth.
We employ a threshold 0.5 to obtain binary masks from soft
masks. Threshold tcnf and tkeep are 0.25 (0.3) and 0.6, re-
spectively. α and β in ?? are 1 and 2, respectively. All
experiments are trained on one NVIDIA DGX node with 8
Tesla V100 GPUs.

By default, for COCO dataset [6], We train our models
with 24 epochs, a batch size of 1 per GPU, a learning rate
of 1.4×10−4 (decayed at the 18th epoch by a factor of 0.1,
learning rate multiplier of the backbone is 0.1). We use a
multi-scale training strategy with the maximum image-side
not exceeding 1333 and the minimum image size varying
from 480 to 800, and random crop augmentations is applied
during training. The number of thing queries Nth is set to
300. Stuff queries have tge equal number of stuff classes,
and it is 53 in COCO.

For the ADE20K dataset [7], we train our model with
100 epochs (decayed at 80th epoch), image size varying
from 512 to 2048. Since ADE20K contains 50 stuff, we
use 50 stuff queries. Other settings are the same to COCO
dataset.

FPS and FLOPs. FPS in Tab.5 is measured on a V100
GPU with a batch size of 1. ”DETR” and ”DETR+mask
wise merging” are from Detectron2 [8] and DETR’s imple-
mentation. Others are from Mmdet [3] and our own imple-
mentation. Our framework is slightly more efficient than
DETR. FLOPs of DETR are measured from Detectron2 on
an average of 100 images.
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Figure B.1. Pixel-wise Argmax vs. Mask-wise Merg-
ing. We use DETR-R50 to compare the results generated
through pixel-wise armgax and mask-wise merging. Firstly,
DETR-R50 detects a cup and a knife from the image. When
using pixel-wise argmax, other pixels ( dining table) are in-
correctly filled with ”cup” or ”knife”. It mistakenly believes
that the largest mask logit is the correct result, regardless of
its value. However, our mask-wise merging strategy gener-
ates the correct results since we binarize each mask.

A.2. Deformable DETR for Panoptic Segmentation

Following DETR for panoptic segmentation, we trans-
planted the panoptic head of DETR to Deformable DETR.
To ensure consistency, we only generate the attention maps
with the spatial shape of 32s. When using single scale de-
formable DETR, the process of generating attention maps
is the same as DETR. When using multi-scale deformable
DETR, we only multiply queries and the features (from C5)
to generate attention maps. Other settings of deformable
DETR for object detection are kept unchanged. We apply
iterative bounding box refinement as the default setting for
Deformable DETR. We use 300 queries and this brings huge
computation costs, although this model achieves pretty
good performance.

B. Discussion
We will deliver more ablation studies, more detailed

analysis in this section.

Method Epoch PQ PQth PQst

DETR [1] 500 43.4 48.2 36.3
D-DETR-SS 50 40.6 44.0 35.4
D-DETR-MS 50 46.3 51.9 37.9

Table B.1. “D-”, “SS” and “MS”
refers to “Deformable”, single-scale and
multi-scale.

Effect of Deformation
Attention. To ablate the
effect of deformable at-
tention, we extend De-
formable DETR on panop-
tic segmentation with the
panoptic head of DETR. For more implementation details,
please refer to the Appendix A. As shown in Tab. B.1,
multi-scale deformable attention improves 2.9% PQ com-
pared to DETR. Multi-scale attention outperforms single-
scale attention by 5.7% PQ, highlighting the important role
of multi-scale features for segmentation task.

B.1. Post-processing Method

Defects of Pixel-wise Argmax. Pixel-wise argmax only
considers the mask logits of each pixel. It has multiple
issues that may lead to incorrect results. First of all, the



Figure B.2. The joint distribution for classification proba-
bility and segmentation score. We can observe that segmen-
tation scores can be high while the masks have low classifi-
cation probability.

Post-Processing Method PQ PQth PQst

Pixel-wise Argmax 48.4 53.2 41.3
Heuristic Procedure [10] 48.4 54.3 39.4
Mask-wise Mering 49.6 54.4 42.4

Table B.2. The results of Panoptic SegFormer (R50) with
different post-processing methods. Because the heuristic
procedure always prefers things, it has the lowest PQst

α β PQ PQth PQst

1 0 48.7 53.5 41.3
0 1 44.4 52.1 32.7
1 1 49.3 54.1 42.1
1 2 49.6 54.4 42.4
1 3 49.7 54.5 42.2

Table B.3. The weights of the classification score and seg-
mentation score determine the priority of masks. We can
observe that employing both of them will perform better.
According to the results on multiple models, we choose
α=1, β=2 as our default setting.

pixel value generated from argmax may be extremely small,
as shown in Fig. B.1, which will generate plenty of false-
positive results. The second issue is that the pixel with max
mask logit may be the suboptimal result, as shown in ??
of the paper. This kind of error frequently appears in the
segmentation maps generated by pixle-wise argmax. Mask-
Former [9] alleviates this problem by multiplying the clas-
sification probability by the masks logits. But this kind of
error will still exist.

Heuristic Procedure. The heuristic procedure [10] was
the first proposed post-processing method of panoptic seg-
mentation. It uses different strategies to handle things and
stuff separately. Pixel-wise argmax was still used in its stuff
workflow. One apparent defect of this method is that it
solves the overlap problem of stuff and things by always

tcnf
tkeep 0.9 0.8 0.7 0.6 0.5

0.20 48.9 49.5 49.6 49.6 49.4
0.25 48.9 49.6 49.7 49.7 49.5
0.30 48.8 49.5 49.6 49.6 49.5
0.35 48.3 49.1 49.2 49.2 49.1
0.40 47.4 48.1 48.2 48.2 48.1

Table B.4. We use two thresholds tcnf and tkeep in our mask-
wise merging. We evaluate the results by combining dif-
ferent thresholds with Panoptic SegFormer (R50) to verify
whether our algorithm is sensitive to these thresholds. Re-
sults higher than 49.5 are displayed in bold.

#Head PQ PQth PQst

1 49.2 54.0 42.0
8 49.6 54.4 42.4

Table B.5. We varied the number of heads in our mask decoder.
More heads can bring slight performance improvements.

preferring things. This is an unfair way of dealing with
stuff. Tab. B.2 shows that PQst of using heuristic procedure
is lower than other methods because all stuff are treated un-
fairly.

Masks-wise Merging. Post-processing of panoptic
segmentation aims to solve the overlap problem between
masks. Although pixel-wise argmax uses an intuitive
method to solve the overlap problem, it has defects men-
tioned above. We solve the overlap problem by giving
different masks different priorities. Mask-wise merging
guarantees that high-quality masks have higher priority
by sorting the masks with confidence scores. This strat-
egy ensures that low-quality instances will not cover high-
quality instances. In order to be able to effectively dis-
tinguish the quality of the masks, we consider both clas-
sification probability and segmentation score as the con-
fidence score of each mask. The segmentation score
average(1{mi[h,w]>0.5}mi[h,w]) represents the confidence
of the overall segmentation quality of the mask. Tab. B.3
shows the results of varying α and β in Eq.6. Applying both
classification probability and segmentation scores always
have better performance. Fig. B.2 shows the relationship
of classification probability and segmentation score. While
one mask has a low classification probability ([0, 0.4]), it
may have a large segmentation score. Large segmentation
score means it has many pixels with high logits and this may
generate false-positive results through pixel-wise argmax
since its classification probability is pretty low.

Our mask-wise merging needs two thresholds to filter out
undesirable results. Tab. B.4 shows that our algorithm is not
very dependent on the choice of threshold tcnf and tkeep.
Tab. B.4
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Figure B.3. Illustration of DETR’s panoptic head. CNN block consists of 3×3 convolution, GN, and ReLU.

Pt #Query Stuff Things
TP TP+FP Precision TP TP+FP Precision

[0.0, 0.1) 44 7318 10060 0.73 136 222 0.61
[0.1, 0.2) 17 839 1308 0.64 140 198 0.71
[0.2, 0.3) 4 121 212 0.57 53 69 0.77
[0.3, 0.4) 11 339 646 0.52 252 368 0.68
[0.4, 0.5) 10 211 446 0.47 212 365 0.58
[0.5, 0.6) 15 327 684 0.48 477 903 0.53
[0.6, 0.7) 24 339 810 0.42 1001 1465 0.68
[0.7, 0.8) 40 400 1094 0.37 2019 3255 0.62
[0.8, 0.9) 83 539 1586 0.34 6325 9687 0.65
[0.9, 1.0] 105 309 1029 0.30 11252 16724 0.67

Total 353 10742 17875 0.60 21867 33256 0.66

Table B.6. We divide 353 queries into ten groups according to their Pt. For each group, we calculate their precision on
stuff and things. Queries with higher Pt have very low precision when they predict stuff. This demonstrates that things may
interfere with the prediction of stuff and using queries to target both things and stuff is suboptimal.
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Figure B.4. Architecture of mask decoder. Attn-Maps
notes attention maps.

Although our proposed mask-wise merging strategy has
achieved better results than other post-processing methods,
it also has several shortcomings. First of all, we binaries
the mask through a fixed threshold. This may cause one
pixel to be easily assigned a void label because the values of
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Figure B.5. Illustration of the module that generates mask
from multi-scale multi-head attention maps. Up2x means
upsampling by two times. FC notes fully connected layer.
Cat notes concatenate. While using 8 heads in the attention
module, this module only contains 200+ parameters.

all candidate instances at this pixel are below the threshold.
Secondly, our strategy highly depends on the accuracy of
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Figure B.6. Visualization of multi-head attention maps and corresponding outputs from mask decoder. Different heads
have different preferences. Head 4 and Head 1 pay attention to foreground regions, and Head 8 prefers regions that occlude
foreground. Head 5 always pays attention to the background that is around the foreground. Through the collaboration of
these heads, Panoptic SegFormer can predict accurate masks. The 3rd row shows an impressive result of a horse that is
highly obscured by the other horse.
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Figure B.7. The Joint Distribution for Queries and Cat-
egory in DETR. We can observe that queries prefer either
things or stuff. Although a few queries predict most of the
stuff results ( within the red box), other queries still gen-
erate a considerable proportion of stuff results (within the
yellow box). Our experimental results demonstrate that the
results in the yellow box are usually of low quality. We sort
the query ids for better visualization. Other literature [11]
reports similar phenomenon.

confidence scores. If the confidence scores are not accurate,
it will produce a low-quality panoptic format mask.

B.2. Location Decoder

Although we use the location decoder to detect the
bounding boxes of things, our workflow is still very dif-
ferent from the previous box-based panoptic segmentation.
For example, Panoptic FPN performs instance segmenta-
tion with Mask R-CNN style. The two-stage method usu-
ally needs to extract regions from the feature based on the
bboxes and then use these regions to perform segmenta-
tion. The quality of segmentation is heavily dependent on
the quality of detection. However, our location decoder is
used to assist in learning the location clues of the query
and distinguishing different instances. Mask will not have
the wrong boundary due to the wrong boundary prediction
of the bbox since the bbox does not constrain the mask.
We also show that using mass centers of masks to replace
bboxes can still learn location clues.

Another valuable function of the location decoder is to
help filter out low-quality thing queries during the training
and inference phase. This can greatly save memory. Current
transformer-based panoptic segmentation methods always
consume a lot of GPU memory. For example, MaskFormer
takes up more than 20G of GPU memory with a batch size



Original Image Ours DETR [1] MaskFormer [9] Ground Truth
50.6% PQ 45.1% PQ 47.6% PQ

Figure B.8. Comparing visualization results of Panoptic SegFormer with other methods on the COCO val set. For a fair comparison, all results
are generated with ResNet-101 [12] backbone. The second and fourth row results show that our method still performs well in highly crowded or occluded
scenes. Benefits from our mask-wise inference strategy, our results have few artifacts, which often appear in the results of DETR [1] (e.g., dining table of
the third row).
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Figure B.9. Failure case of Panoptic SegFormer.



Figure B.10. Visualization results of some complex scenes.

of 1 and R50 backbone. Although these methods have
achieved excellent results, they also require high hardware
resources. However, our Panoptic SegFormer can be trained
with taking up less than 12G memory by using a location
decoder to filter out low-quality thing queries. In particu-
lar, we use bipartite matching for multiple rounds of match-
ing in the detection phase. The thing query that already
be matched will not participate in the next round of match-
ing. After several rounds, we can select partial promising
thing queries. Only these promising thing queries will be
fed to the mask decoder. with this strategy, the mask de-
coder usually only needs to handle less than 100 thing and
stuff queries.

B.3. Mask Decoder

Fig. B.3 shows the architecture of DETR’s panoptic
head. Although it only contains 1.2M parameters, it has
a huge computational burden (about 150G FLOPs). DETR
adds ResNet features to each attention map, and this pro-
cess repeats 100 times since there are 100 attention maps.
Fig. B.4 shows the model architecture of our mask decoder.
Fig. B.5 shows the process of converting multi-scale multi-
head attention maps to mask. We found that discarding the
self-attention in the decoder does not affect the effectiveness
of the model. The computational cost of our mask decoder
is around 30G FLOPs.

Multi-head attention maps. Fig. B.6 shows some sam-
ples of multi-head attention maps. Through a multi-head
attention mechanism, different heads of one query learn



their own attention preference. We observe that some heads
pay attention to foreground regions, some prefer bound-
aries, and others prefer background regions. This shows
that each mask is generated by considering various com-
prehensive information in the image. Tab. B.5 shows that
utilizing a multi-head attention mechanism will outperform
single-head attention by 0.4% PQ.

B.4. Advantage of Query Decoupling Strategy

DETR uses the same recipe to predict boxes of things
and stuff (To facilitate the distinction between the query
decoupling strategy we proposed, we refer to the DETR’s
strategy as a joint matching strategy.). However, detecting
bboxes for stuff like DETR is suboptimal. We counted the
ratio of the area of masks to the area of bboxes on the COCO
train2017. The ratios of things and stuff are 52.5% and
9.2%, separately. This shows that bounding boxes can not
represent stuff well since the stuff is amorphous and dis-
persed. We also observe that bbox AP of DETR drops from
42.0 to 38.8 after training on panoptic segmentation. This
may be due to the interference of stuff on things, since pre-
dicting stuff bboxes needs to re-adapt the model.

Fig. B.7 shows that DETR seems to learn automatic seg-
regation between things and stuff, and each query either
prefers things or stuff. However, we argue that this automat-
ically learned segregation is not ideal. If one query prefers
things, it will perform poorly when it generates stuff results.
This situation is very common, and our following experi-
ments based on Panoptic SegFormer will give detailed data.
Following DETR, we use 353 queries to predict things and
stuff with the same recipe. Specifically, the input of the lo-
cation decoder is 353 queries, which will detect both things
and stuff. The refined queries are fed to the mask decoder
to predict category labels and masks. We define a query’s
preference for things as Pt, which can be calculated by:

Pi
t = Ni

things/(N
i
things +Ni

stuff), (1)

where Nthings and Nstuff are the number of things and stuff
masks that i-th query predicted on COCO val set. Pi

t > 0.5
means that i-th query prefers things more than stuff. The
predicted mask is a true positive (TP) if IoU between it and
one ground truth mask is larger than 0.5 and the category
of them is the same. Then we can calculate the precision of
queries’ predicted masks. Tab. B.6 shows relevant statisti-
cal results. First, we can observe that the queries that own
lower Pt basically have higher precision. The stuff preci-
sion of the queries that have the highest Pt ([0.9, 1.0]) only
is 0.30, which is much lower than the average stuff precision
(0.60) on all queries. These erroneous results are mainly
due to errors in the predicted category. Queries that have
no obvious preference for stuff and things( Pt in [0.4, 0.6)
) performs poorly both on stuff and things. These results
demonstrate that using one query set to predict things and

stuff simultaneously is flawed. This joint matching strategy
is suboptimal for stuff.

In order to avoid mutual interference between stuff and
things, we propose the query decoupling strategy to handle
things and queries with a separate query set. Compared to
stuff query, thing query will go through an additional loca-
tion decoder. However, all queries will produce the outputs
in the same format. Things and stuff use the same loss for
training, except that things use an additional detection loss.
During inference, we can use our mask-wise merging strat-
egy to merge them uniformly. This is different from the
previous methods that modeled panoptic segmentation into
instance segmentation and semantic segmentation. For ex-
ample, Panoptic FPN uses one branch to generate things and
one branch to generate stuff. The things and stuff generated
by Panoptic FPN are in different formats and need different
training strategies and post-processing methods. PQst with
query decoupling outperforms joint matching strategy by
2.9% PQ and experimental results verify the effectiveness
of our method. The stuff precision by using query decou-
pling is 0.66, better than the joint matching strategy.

C. Visualization

Fig. B.8 shows our visualization result against DETR
and MaskFormer. We use the original codes that they of-
ficially implemented. First of all, compared with other
methods, we can observe that our results are more consis-
tent with ground truths. Due to the defects of pixel-wise
argmax we discussed in Appendix B.1, DETR always gen-
erates results with artifacts. MaskFormer performs better
because they improved pixel-wise argmax by considering
classification probabilities. However, it may still fail in
hard cases. For example, it recognizes the billboard as a
car in the fourth row. Fig. B.9 shows some failure cases of
our model. Firstly, our model may have lower recall when
facing crowded scenarios filled with the same things, espe-
cially for the small targets. Another typical failure mode is
that large stuff with a high confidence score occupies most
of the space, causing other things not to be added to the can-
vas. Fig. B.10 shows the results on some complex scenes.

D. Various Backbones

We give all the panoptic segmentation results under var-
ious backbones, as shown in Tab. D.1. Fig. D.1 shows
two training curves with backbone ResNet-101 and Swin-
L. With Swin-L, Panoptic SegFormer with training for 24
epochs even performs better than training for 50 epochs.



Backbone PQ SQ RQ PQth SQth RQth PQst SQst RQst

ResNet-50 [12] 49.6 81.6 59.9 54.4 82.7 65.1 42.4 79.9 52.1
ResNet-101 [12] 50.6 81.9 60.9 55.5 83.0 66.3 43.2 80.1 52.9
PVTv2-B0 [13] 49.5 82.4 59.2 55.3 83.3 65.8 40.6 80.9 49.2
PVTv2-B2 [13] 52.5 82.7 62.7 58.5 83.6 69.5 43.4 81.4 52.4
PVTv2-B5 [13] 55.4 82.9 66.1 61.2 84.0 72.4 46.6 81.3 56.5
Swin-L [5] 55.8 82.6 66.8 61.7 83.7 73.3 46.9 80.9 57.0

Table D.1. Panoptic segmentation results on COCO val with various backbones.
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Figure D.1. By using ResNet-101 [12] and Swin-L as the
backbone, we train our model for 24 epochs and 50 epochs,
separately. We can observe that our model that training for
24 epochs can achieve comparable or even higher results
while comparing the models that training for 50 epochs.

E. Code and Data
We use the official implementations of DETR1, Mask-

Former2, Panoptic FCN3 to perform additional experiments.
The models they provide all can reproduce the same scores
they reported in their literature. Deformable DETR is from
Mmdet4.
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